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Matched Filter Stochastic Background Characterization 

for Hyperspectral Target Detection 
 

by 
Jason E. West 

 
 

ABSTRACT 

 

 Algorithms exploiting hyperspectral imagery for target detection have 
continually evolved to provide improved detection results.  Adaptive matched 
filters, which may be derived in many different scientific fields, can be used to 
locate spectral targets by modeling scene background as either structured 
(geometric) with a set of endmembers (basis vectors) or as unstructured 
(stochastic) with a covariance matrix.  In unstructured background research, 
various methods of calculating the background covariance matrix have been 
developed, each involving either the removal of target signatures from the 
background model or the segmenting of image data into spatial or spectral 
subsets.  The objective of these methods is to derive a background which 
matches the source of mixture interference for the detection of sub pixel 
targets, or matches the source of false alarms in the scene for the detection of 
fully resolved targets.  In addition, these techniques increase the multivariate 
normality of the data from which the background is characterized, thus 
increasing adherence to the normality assumption inherent in the matched 
filter and ultimately improving target detection results.  Such techniques for 
improved background characterization are widely practiced but not well 
documented or compared.  This thesis will establish a strong theoretical 
foundation, describing the necessary preprocessing of hyperspectral imagery, 
deriving the spectral matched filter, and capturing current methods of 
unstructured background characterization.  The extensive experimentation will 
allow for a comparative evaluation of several current unstructured background 
characterization methods as well as some new methods which improve 
stochastic modeling of the background.  The results will show that consistent 
improvements over the scene-wide statistics can be achieved through spatial or 
spectral subsetting, and analysis of the results provides insight into the trade-
spaces of matching the interference, background multivariate normality and 
target exclusion for these techniques.  
The views expressed in this article are those of the author and do not reflect the 
official policy or position of the United States Air Force, Department of Defense,
or the U.S. Government. 
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1.0 Introduction 

Hyperspectral Imagery Overview 

 Hyperspectral imagery (HSI) may be defined as imagery taken over many 

(usually more than one hundred) spectrally contiguous and spatially co-

registered bands.  In contrast to panchromatic imagery, which integrates light 

over a wide range of wavelengths, or multispectral imagery, which selectively 

captures light of several different narrow bands, HSI data contains a nearly 

continuous electromagnetic (EM) spectrum behind each spatial pixel in a scene.  

The motivation for building costly HSI sensors lies in the added information 

content of the spectral dimension.  While few materials can be distinguished in 

a pan image, most materials have somewhat unique characteristics across the 

EM spectrum.  There are many ways to use HSI data to perform spectral 

analysis, including classification, anomaly detection, and target detection.  

Classification is the process of assigning a land cover type (or class) to each 

pixel within a scene.  Anomaly detection refers to locating pixels in the scene 

that are different from all other pixels.  Target detection attempts to locate 

pixels containing a target material of known spectral composition.  While 

techniques from all three processes will be employed in this work, target 

detection will be the main focus. 

 

The Target Detection Problem 

 Target detection has many applications, including military 

reconnaissance and environmental studies.  Searching for the presence of a 

specific material over a large area poses many practical difficulties.  The 

prospect of using remotely sensed HSI to perform this task in an accurate and 
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timely manner has driven the research community to generate many different 

types of target detection algorithms.  Spectral matched filter target detection is 

a well developed technique using a known target spectrum to search for the 

presence of that spectrum in a scene.  Most forms of the spectral matched filter 

contain a model of scene background (often called clutter) which is used to 

suppress the appearance of background and increase target contrast.  Many 

detectors may use structured (geometric) backgrounds, which are formed from 

collections of the most spectrally “pure” pixels in the scene, called endmembers.  

Other detectors model background with unstructured (stochastic) 

representations, which take the form of first and second order spectral statistics 

(mean and covariance) estimated from the scene data.  Because background 

characteristics change from scene to scene, these filters must adapt based on 

specific image content.  The adaptive matched filter (AMF) is a detector that 

models and suppresses an unstructured background and then uses a known 

target spectrum to search for that target in an HSI data set.  Much of the work 

to improve AMF performance has focused on improved scaling of detector 

results.  By scaling the data to increase separation between target detects and 

false alarms, a threshold can be more easily set to automate the decision 

process.   

 Another and perhaps more fruitful approach to improved detection 

results is to improve the estimation of background made by the AMF, thus 

increasing the suppression of unwanted signal and creating greater separation 

between target detects and false alarms before scaling.  Due to the assumption 

inherent in the thresholded AMF of a multivariate Gaussian (or normal) 

background, improvements to background models can be achieved by 
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increasing the multivariate normality (MVN) of data used to represent image 

background.  Based on this concept, several methods for calculating 

background statistics have been developed in the field which are reported to 

improve detection results for specific targets, detectors, and HSI data sets.  

Each of these methods takes cues from the imagery to establish a rationale for 

selecting which data is to be included in the estimation of background 

statistics.  Establishing this rationale to model scene background and selecting 

a mathematical technique to calculate background statistics are together called 

the characterization of background. 

 

Approach 

 The work performed for this thesis involved the implementation of several 

algorithms currently in the literature, along with the development of several 

new techniques that build upon or depart from previous work.  Methods 

employing target exclusion, spatial subsetting (windowing), and spectral 

subsetting (classification) were tested for improved background modeling.  First, 

a manual method of windowing was tested against the full scene statistics.  

Next, the sliding window background characterization method of the RX 

algorithm was implemented to test the performance of automated spatial 

subsetting.  The K-Means and Stochastic Expectation Maximization (SEM) 

classification algorithms were applied to the spectral subsetting problem, and a 

modification of SEM called the Statistical Distance Classifier (SDC) was used to 

improve the predictability of results.  Several methods combining the spatial 

and spectral subsetting of data were explored to learn about the 

phenomenology of interference and false alarms.   
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 Spatial and spectral methods of target exclusion were applied to each 

technique in an attempt to characterize the vulnerability of different subsetting 

methods to the presence of target pixels in the background data pool (target 

contamination).  To measure adherence to the MVN assumption, the chi-

squared multivariate normality test with a goodness of fit metric was applied to 

each type of background.  In order to evenly test these backgrounds as applied 

to detection, a single scaling method was selected from the family of 

unstructured matched filters.  The generalized likelihood ratio test (GLRT) 

detector was applied to find several different targets in two different scenes.  

Finally, receiver operator characteristic (ROC) curves were used in combination 

with a summary average false alarm rate (AFAR) metric to quantify detection 

results.   

 The experiment investigated a correlation of the methods for estimating 

background statistics, the normality of the background, and the sensitivity of 

these techniques to target contamination, with the rate of detect versus false 

alarm performance.  The results of the experiment lead to the identification of 

the best background characterization techniques to employ for a given type of 

detection problem.   
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2.0 Background and Literature Review 

 

2.1 HSI Processing 

 The target detection problem begins with a raw HSI data set (in digital 

counts) which is passed through a number of processing steps before a 

matched filter is applied.  Calibration, atmospheric compensation, 

dimensionality reduction, and background estimation are generally performed 

in order to seed a detector with useful data.  Several techniques have been 

developed to perform these steps, and there are many parameters to set along 

the way.  The interdependencies of parameters selected in the collection, 

processing, and exploitation of HSI data are an important consideration when 

working to advance any portion of the process.  Each of the many techniques 

will influence the final result in some manner.  In order to ensure constructive 

research for a single technique in a certain step, it is important to understand 

the entire process, from photon to decision, and to consider the effect of each 

method and parameter. 

 The hyperspectral imaging chain for visible and near infrared (VISNIR) 

imagery begins with a physics based model for photons propagating from the 

sun to the sensor aperture.  The governing equation for the radiance reaching a 

sensor from solar photons may be expressed 

λλλλλ λτλ
π
λ

π
λλτσµ udavgb

d
dss LrLF

r
FErEmsrmwL +−++=−−− )()]()1(

)()()('cos'[][ 21
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where E΄s is the exoatmospheric solar irradiance, σ΄ is the illumination zenith 

angle, τ1 is the atmospheric transmission from the sun to the target, F is the 

fraction of the hemisphere above the target filled by sky, Ed is downwelled 
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irradiance, rd is target reflectance assuming a diffuse target, Lbavg is the average 

background radiance, τ2 is the atmospheric transmission from the target to the 

sensor, and Lu is the upwelled radiance [Schott, 1997].  This equation assumes 

an approximately uniform (Lambertian) target and approximately diffuse 

downwelled and background radiance terms, and includes angular 

dependencies not shown.  From equation 2.1, it is apparent that photons 

leaving the sun, interacting with the target, and eventually entering the sensor 

are affected by atmospheric transmission and scattering as well as viewing 

angle.  Once at the aperture, photons propagate through the sensor optics and 

are eventually measured by the detector array and converted to electrons.  The 

resulting electrical signal passes through sensor electronics and is stored in 

memory in the form of digital counts.   

 In order to use the data for traditional matched filtering, the process can 

be reversed in calculation to obtain a measure of surface reflectance.  

Calibration is the process of converting sensor digital count (raw sensor data) to 

radiance at the aperture.  Optics are tested and characterized during 

fabrication and each sensor component has a known effect on the output 

signal.  An attempt to correct for imperfect diffraction of photons entering the 

front aperture or modulation of the signal occurring between the detector array 

and the memory device can be performed by sensor calibration.  The next 

processing step is atmospheric compensation, which attempts to remove the 

effects of atmospheric absorption and scattering as well as illumination angle 

from the radiance image, converting radiance at the aperture to reflectance at 

the target surface.  Some preprocessing methods combine the two steps, 

converting from digital count directly to reflectance.  Otherwise, HSI data sets 
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are obtained in radiance units or are accompanied by sensor models, and a 

preferred method of atmospheric compensation can be applied. 

 Due to the high dimensionality of HSI data, another common 

preprocessing step reduces the number of bands or spectral channels in the 

data cube.  Bad bands lists, which often accompany data sets, are used to 

exclude spectral bands that are in atmospheric absorption features or are 

problematic due to sensor defects.  Other methods use vector algebra to rotate 

the data into new axes where some of the data can be discarded without 

significant loss of information.  The resulting HSI cube contains most of the 

image information, little noise or meaningless spectral content, and is ready to 

be processed by classification and anomaly or target detection algorithms. 

 Before any type of target detection can be performed, the HSI data is 

often preprocessed to correct for the atmosphere and reduce the dimensionality 

of the data in order to produce a computationally manageable data set.  In 

order to best assign meaning to a detection result, it is important to understand 

both the underlying assumptions of preprocessing and the resulting data upon 

which the detectors are applied.  The following sections will discuss these 

preprocessing steps in more detail. 

 

2.1.1 Atmospheric compensation 

 Many methods for atmospheric compensation have been developed, 

including CIBR [Carrere and Conol, 1993], ATREM [Gao et al, 1993], and 

NLLSSF [Green et al, 1993].  Each of these uses different techniques to estimate 

atmospheric content and apply a radiative transfer model to the data.  Another 

technique, which is simple and commonly used, is the empirical line method 
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(ELM).  Given field measured ground truth spectra and the location of 

corresponding radiance pixels within the scene, ELM generates a linear fit to 

solve for a gain and offset according to the equation 

brgL +=  2.2 

where r is reflectance, g is gain, L is radiance, and b is offset bias [Schott, 

1997].  In order to achieve a linear fit that best represents the data, an attempt 

is usually made to maximize the number of truth spectra -- and thus the 

number of points for the fit -- and to populate the ELM data with extrema in 

reflectance (i.e. selecting both bright and dark objects, like concrete and water).  

The estimated linear transform is then applied to every pixel in the scene, 

employing an assumption of uniform atmospheric content and illumination 

conditions across the sensor field of view.  The result is an HSI data set 

transformed into reflectance units, which can then be compared to ground 

truth reflectance spectra.  It is also possible to use ELM to convert directly from 

raw digital counts to reflectance as long as the sensor model is assumed to be 

linear.  The goal of either is to obtain a scene and target spectrum that are in 

the same units.  It is also important to note, keeping in mind that a statistics 

based target detector is the final step of the process, that linear atmospheric 

compensation routines will not change the image statistics and will therefore 

not interfere with a comparison of statistics based detection results [Manolakis 

et al, 2001].  A representation of ELM is shown in Figure 2.1, which depicts a 

line of best fit through several ground truth points, providing a linear 

transformation between radiance and reflectance. 
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Figure 2.1 ELM Representation 

 

2.1.2 Dimensionality Reduction 

 An HSI data cube typically contains hundreds of spectral bands and 

thousands of pixels (observations) which can lead to unmanageable 

computation times when performing matrix operations on each pixel.  

Additionally, much of the data contained in a typical HSI scene (e.g. bad data or 

noise) can be detrimental to detection algorithms.  Many dimensionality 

reduction techniques have been developed to ameliorate these problems.  The 

first and most obvious is the exclusion of bad bands from the data.  Many 

imaging systems include bands in water absorption portions of the spectrum.  

Obviously, bands where the atmosphere is opaque will obscure the true spectral 

shape of the data and confound detection algorithms.  The number of bad 

bands will depend on the sensor and the conditions at the time of image 

capture.  Bad band exclusion is a helpful, simple, and commonly used 

technique, but the number of bands that may be eliminated by this process are 

limited. 
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 Other techniques, like principle component analysis (PCA), have been 

developed to provide greater dimensionality reduction [Schott, 1997].  PCA is 

based on the assumption that statistical variation in the data is related to 

information content.  By transforming the data into a space where the bands 

are uncorrelated and then removing bands that contain the least statistical 

variation (information), PCA can dramatically reduce the number of bands in an 

image.  This transformation is devised through a solution to the generalized 

eigenvalue problem 

UU TΛ=Σ  2.3 

where Σ is the covariance matrix, U is an orthogonal matrix (U-1 = UT) with 

columns containing the eigenvectors, and Λ is a diagonal matrix containing the 

eigenvalues (variances) along the diagonal.  The variances are typically ordered 

from largest to smallest (denoted σ1, σ2, σ3,....,σN), and the eigenvectors in U 

reordered accordingly.  The PCA transform is then performed by multiplying 

each pixel (x) in the original data by the matrix of ordered eigenvectors (E), thus 

resulting in data where the covariance matrix is uncorrelated, which can be 

expressed 

xEX T
PC =  2.4 

where XPC is the principle component transform result.  The rotations involved 

in PCA alter, but do not corrupt, the scene statistics.  However, discarding 

bands with little to no information is a nonlinear process that will alter the 

content and form of scene statistics. 
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2.1.3 Spectral Mixing Models 

 Due to the low spatial resolution of HSI data, most target detection 

algorithms apply to subpixel targets.  If the ground instantaneous field of view 

(GIFOV) of a detector element in the sensor is larger than the target of concern, 

the image pixel containing the target will also contain other materials.  It is 

therefore important to understand the physical construction of the data and to 

adopt a model of pixel formation.  The most commonly used representation is 

the linear mixing model (LMM).  This model assumes that if photons arriving at 

a detector element originate at different materials within the spatial coverage 

area of the pixel, the resulting spectrum will be a linear combination of the 

individual spectra of the constituent materials.  Spectrally distinct materials 

which combine to form pixel spectra are often called endmembers.  The LMM 

for a mixed pixel, represented by the vector X(x,y), in an ℓ-band image 

containing p endmembers may be expressed as 

),(),(),( yxnyxMyxX += α  2.5 

where M is an ℓ x p matrix containing the endmember spectra, α is a p-

dimensional vector containing the fractional abundances of each endmember in 

M, and n is an additive random ℓ-dimensional noise vector [Harsanyi and 

Chang, 1994].  Classification based on the LMM is often accomplished by least-

squares inversion to reverse the process, unmix the pixel spectra, and solve for 

the abundance map α(x,y).  

 Another model for how pixels are formed in HSI is the stochastic mixing 

model (SMM).  Instead of assuming that a mixed pixel is populated by linear 

combinations of endmembers, SMM assumes combinations of vectors randomly 
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selected from multivariate Gaussian probability endmember distributions 

[Stocker and Schaum, 1997].  The SMM may be represented as 

21 )1( MMx αα −+=  2.6 

where M1 and M2 are two endmembers selected independently from their 

respective distributions and α is the mixing fraction [ibid].  This can be adapted 

for target detection simply by changing the nomenclature, replacing M1 with a 

target distribution MT and M2 with a background distribution MB.  The additive 

noise factor is assumed insignificant or included in the endmember 

distributions. [Manolakis et al, 2001].  The SMM may also be applied to 

combine image statistics, a technique discussed in a later section. 

 

2.1.4 Classification 

 Image classification is a technique widely used to determine land cover in 

multispectral or hyperspectral data.  Classification algorithms are either 

supervised, using in-scene training data specified by a user, or unsupervised, 

using mathematical techniques that do not require training data.  K-means and 

stochastic expectation maximization (SEM) are two types of unsupervised 

classification that may be useful for improved target detection. 

 K-means is a simple and commonly used unsupervised image 

classification method which requires the user only to specify the number of 

classes.  Random class means are generated and each image pixel is assigned 

to a class by calculating a minimum distance to the mean.  New class means 

are calculated based on the pixel assignments and the process is repeated until 

the means stop changing by a thresholded amount [Schott, 1997].  Figure 2.2 is 
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a depiction of the k-means classification process, where three distinct classes 

are present in a two band image.  The red points are class means based first on 

random pixel assignment, then on assignment of pixels with smallest Euclidean 

distance.  These points get progressively closer to the class means and stop 

migrating when they represent stable means of each class. 

 

 

Figure 2.2 K-Means Classification 

 

 SEM is another approach to classification which considers not only first 

order, but also second order information when assigning pixels to a class.  The 

SEM algorithm requires the user to specify the maximum possible number of 

classes and a minimum class size threshold, and the result is the number of 

classes and a mean and covariance for each class.  Classes are modeled as 

normal distributions, combining additively to form the image.  The conditional 

probability of a pixel belonging to a certain class can be modeled by a Gaussian 

distribution, and the probability expressed 
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where µi and Σi are mean and covariance for each class, ℓ is the number of 

spectral bands, and |Σi| is the determinant of the covariance matrix.  

Respectively, the combined probabilities for the image can be expressed 
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where k is the number of classes and p(i) is the probability of each class 

existing.  The distributions in p(x) exist in the data, allowing for estimation of 

the statistics on the right hand side of equation 3.11 [Schott, 2004].  The 

algorithm relies on a posteriori estimates of class statistics, and must therefore 

be initialized with some values for mean and covariance.  This can be done by 

randomly assigning pixels to each class, or by using the results of a previous 

classification.  Once pixels have been assigned to classes, the mean and 

covariance are calculated by 
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where n is the current iteration and n
mN  is the number of pixels assigned to 

class m in iteration n.  The probability of class m existing in the next iteration 

can also be calculated by 

N
Nip

n
mn

m =+ )(1  2.11 

where the probability must exceed the user defined threshold for minimum 

class size.  The conditional probability p(x|i) in the next iteration can then be 

estimated from the results of equations 2.9, 2.10, and 2.11 by the normal 
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distribution in equation 2.7.  The result of the process is an estimated a 

posteriori probability of each class, which can be expressed 

∑
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where M is the user defined maximum number of classes [Masson and 

Pieczynski, 1993].  In practice, to substitute for the product p(i)p(x|i), a 

discriminant function can be derived using the natural log to eliminate the 

exponential in the expression.  This discriminant function takes the form 
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which preserves the rank order of the probabilities [Schott, 1997].  Pixels are 

reclassified based on these probabilities and the new mean, covariance, and p(i) 

values are calculated for each class.  These values then seed the next iteration 

and the process continues until a convergence criterion has been satisfied.  For 

determining convergence, a simple method such as thresholding the change in 

class means is a viable option. 

 Incorporating second order statistics into the classification process 

allows the algorithm to consider spectral shape of a class, which leads to more 

accurate classification.  The method will, in turn, provide better class statistics 

within the classified image. 

 

2.2 Matched Filters 

 There are a growing number of spectral matched filters which perform 

the task of locating target spectra within a data set.  The fundamental principle 

behind the matched filter remains constant with each new addition.  The 
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spectral matched filter operates in much the same way as the spatial matched 

filter, both using a target function to search for the location of a similar 

function.  The ideal spatial matched filter returns a Dirac delta, or impulse 

response, at the location of the function, as expressed by 

],[],[*],[ oooo yyxxyxmyyxxf −−∂=−−  2.14 
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where * denotes a convolution, 1−ℑ  is the inverse Fourier transform operator, 

f[x] is the function, F[ξ] is the Fourier transform of the function, m[x] is the 

matched filter, and xo and yo are the offsets or translations [Gaskill, 1978].  For 

multispectral or hyperspectral data, the spectral matched filter follows the same 

concept, testing each pixel location for similarity to a spectral function.  In 

practical application, this is performed as a matrix multiplication of target 

spectrum with each pixel, where the larger the magnitude of the result the more 

similar the pixel is to the target.  For real world HSI applications, the results of 

the quantized ideal matched filter are not nearly distinct enough to easily 

threshold.  This problem drives the need to design matched filters which 

increase the disparity between target and non-target returns. 

 

2.2.1 Spectral Angle Mapper 

 The spectral angle mapper (SAM) is a quick and easy method often used 

to test pixel spectral similarities without any characterization of background.  It 

is based on a simple vector projection, and the result is the cosine of the angle 
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between a reference vector and a pixel vector.  The operator can be expressed as 

a scalar product 
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where d is the reference spectrum, x is a pixel, and θ is the angle between them.  

This metric gives a measure of similarity between the vectors, although it 

considers only relative spectral angle and not the relative vector magnitudes.  

The SAM result can also be performed by matrix multiplication, which can be 

expressed 

2/12/1 )()( xxdd
xdT TT

T

SAM =  2.17 

where we will adopt T as the standard form of a detection statistic or result.  In 

this case, cos(θ) will always be positive with a range from zero to one because all 

spectra vectors have positive components [Manolakis et al, 2001].  In this form, 

SAM clearly resembles an ideal matched filter.  SAM is commonly used in the 

early stage of processing algorithms because it is computationally inexpensive 

and does not require any statistical information about the scene. 

   

2.2.2 Structured and Unstructured Backgrounds 

 In order to take the next step and include a model for background in the 

matched filter, it is important to recognize two distinct categories of background 

characterization.  Structured backgrounds, like the kind used in the orthogonal 

subspace projection (OSP) algorithm [Harsanyi and Chang, 1994], are 

concatenations of background endmember spectra.  The OSP algorithm projects 

pixels onto a subspace orthogonal to the selected structured background 
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endmembers or basis vectors.  This method involves defining the background 

endmembers that exist within a scene by use of an endmember selection 

routine like singular value decomposition (SVD) [Healey and Slater, 1999], 

MaxD [Lee, 2003], PPI [Boardman et al, 1995], or N-FINDR [Winter, 1999].  This 

category is often referred to as the geometric approach to background 

characterization. 

 In contrast, the stochastic approach derives an unstructured 

background from the image data.  In the matched filter equation, this takes the 

form of a statistical mean and a covariance or correlation matrix, where the 

mean, covariance matrix, and correlation matrix may respectfully be expressed 
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This concept for representation of background is the basis of several variations 

of clutter matched filters.  The correlation matrix is often applied to mean 

subtracted data to avoid the unnecessary subtraction in calculation of the 

covariance matrix.  Using the correlation matrix in place of the covariance 

matrix will change the raw results.  A more thorough comparison of the two will 

be discussed in a later section. 

 When applying first and second order statistics to the target detection 

problem, it is important to note the underlying assumptions.  First, the 

background is homogeneous and exhibits multivariate Gaussian behavior.  

Second, the background spectrum interfering with the target signature has the 
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same covariance as the background training pixels.  Finally, the spectra of the 

target and background must combine in an additive manner [Manolakis and 

Shaw, 2002].  These assumptions must be made because of the decision theory 

upon which adaptive matched filters are based, which will be covered in the 

next section. 

 

2.2.3 Adaptive Subspace Matched Filters 

 The Neyman-Pearson theorem establishes a binary hypothesis for the 

presence or absence of target material in a pixel.  Each hypothesis is assumed 

to represent a normal probability density function (PDF).  This can be 

represented by 
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where Σb is the background covariance, and Σt is the covariance with target 

present.  These hypotheses can be compared by forming a likelihood ratio  
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where τ is a threshold which will determine the probability of a false alarm (Pfa).  

Any detector of this type, which has an adjustable threshold allowing the user 

to set Pfa, can be called a constant false alarm rate (CFAR) detector.  According 

to the underlying assumptions, the PDF associated with each hypothesis has a 

normal distribution, and can therefore be represented by 
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where Σ  is the determinant of the covariance matrix.  While in equation 2.23 

the distribution follows the traditional Gaussian PDF, it is important to note 

that HSI data are not generally normal, especially for scenes with many 

material types.  Therefore, Neymen-Pearson detectors should be expected to 

lose accuracy as the PDF of the HSI data strays from Gaussian distributions.  A 

solution to the over reaching normality assumption is currently being pursued 

by several research groups in the field [Stein et al, 2002], [Manolakis et al, 

2002].  In order to establish the likelihood ratio in equation 2.22, the data mean 

and covariance, which are not generally known, must be estimated from the 

data.  This requires an adaptive detector, which is usually developed as a 

generalized likelihood ratio test (GLRT).  Substituting equation 2.23 into 

equation 2.22 and computing the natural logarithm, we arrive at the quadratic 

detector 
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which is the comparison of the Mahalanobis distance between the pixel 

spectrum x and the mean of the background and target distributions.  While 

the covariance matrix of the background can be estimated from scene data, the 

target covariance matrix generally cannot be obtained.  If the covariance 

matrices of the background and target are assumed to be equal, an adaptive 

matched filter that suppresses clutter based on background statistics can be 

derived either by maximizing the cost function [Manolakis and Shaw, 2002], or 

by minimization of the total energy of the filter output by the constrained 

energy minimization (CEM) technique [Ferrand and Harsanyi, 1997].  The result 

of either is a matched filter based on the target to pixel Mahalanobis distance, 
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using a background covariance, scaled by the matched filter return of the target 

with itself (maximum possible signal to background ratio (SBR)).  This matched 

filter, which we will call CEM, can be expressed 
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where the detection statistic TCEM can be related to abundance, d again is the 

target spectrum, and Σ = Σb to simplify the nomenclature.  CEM may be seen as 

the unstructured equivalent to the scaled structured-background OSP operator, 

replacing the projection operator formed through concatenation of endmember 

spectra with the covariance matrix estimated from the scene background.  The 

equations for these algorithms, which characterize background, share the same 

basic form as the simple matched filter in equation 2.23, but include an 

operator which compensates for spectral variation in scene background, 

thereby adapting to differing scene content. 

 Another type of detector derived by Kelly [1989], which uses the GLRT 

but does not employ an optimality test, can be expressed 
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This detector can be developed further to form a family of detectors including 

the adaptive coherence estimator (ACE) 
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and the so-called adaptive matched filter (AMF) 
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which are all different ways to stretch the detection statistic and achieve greater 

target to non-target separation [Manolakis et al, 2001].  While this family of 

improved detectors is valuable in practical application for more easily setting a 

CFAR threshold, the method used to calculate the background covariance may 

have a greater impact on overall detector performance.  As previously noted, for 

all adaptive matched filters, information about the target and background 

statistics are not available and must be provided, or estimated from the given 

data set.  The target spectrum is obtained from library data or measured 

ground truth, and background statistics are commonly derived using all 

available observations (pixels).  Practical methods for estimating these statistics 

based on different characterizations of scene background will be covered in a 

later section. 

 

2.3 Evaluation Metrics 

 There are many ways to visualize and quantify target detection results.  

The detection statistic may be examined in raw form, in an image, or plotted in 

order to help an analyst visualize the results.  For the detection problem, the 

relationship between Pfa and Pd may also be tabulated to assess detector 

performance.  To fully characterize this relationship, a receiver operator 

characteristic (ROC) curve can be plotted, giving a graphical representation of 

detector performance.  When several ROC curves need to be compared, another 

metric may be developed to characterize ROC performance with a single 

numerical value.  All of these techniques warrant consideration when 

evaluating the performance of an algorithm based upon detection results. 
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2.3.1  Detection Statistic Examination 

 The most obvious method for visualization is simply an image of the 

detection statistic.  As the detector operates on each pixel, an image similar to 

an abundance map is populated with the returned values of T.  The brighter the 

pixel appears on the map, the greater the probability of target presence (or the 

greater the target abundance) within the pixel.  This image may also be plotted, 

pixel brightness versus pixel index, to allow for easier visual gray scale 

comparison.  Another way to visualize raw detector output is the use of a 

histogram, which allows the user to observe the number of occurrences of each 

pixel value.  An example detection statistic image, brightness plot, and the 

corresponding histogram (for target pixels only) are shown in Figure 2.3.  
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     (a)         (b) 

 

 (c) 

 
Figure 2.3 Example Target Detection Results Examined by a Detection Statistic  

(a) Image, (b) Plot, and (c) Histogram (Target Pixels Only). 
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2.3.2 Receiver Operator Characteristic Curves 

 When ground truth is available for a given scene -- that is, all target pixel 

locations are known -- the most common method for evaluation of detection 

algorithms is a comparison of the probability of detection (Pd) and the 

probability of  false alarm (Pfa).  Short of compiling the data necessary to form a 

ROC curve, detector performance at different thresholds (τ) can be characterized 

by varying τ to tabulate three discrete results for Pd and Pfa.  First is the value of 

Pfa when Pd is unity, second is the value of Pd when Pfa is zero, and third is the 

value of Pd when Pfa is set at some small acceptable value.  If this is repeated for 

a large number of thresholds, a full ROC curve can be formed.  An example of a 

comparison of several ROC curves is shown in Figure 2.4. 
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Figure 2.4 Example ROC Curves for Detector Performance Evaluation 

 

The ideal ROC result would have a steep slope along the y-axis and reach a 

maximum detection rate at very low rates of false alarm.  The three curves in 
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Figure 2.4 represent varying detector performances.  It is important to note that 

each value for Pd in a ROC curve has a confidence interval associated with it, 

based on the relative number of targets in the scene.  This should be considered 

to ensure that improvements in Pd are meaningful in images with few targets.  

For this reason, the terms detection rate and false alarm rate will generally 

substitute for the probability terms.  

 For target detection experiments involving several or even hundreds or 

thousands of ROC curves, a summary metric is needed to characterize ROC 

performance.  One such summary technique uses an estimate of the area under 

the ROC curve to capture detector performance in a metric called the average 

false alarm rate (AFAR) [Bajorski et al, 2004].  AFAR is simply the average of all 

of the false alarm rates measured at the detection of each target.  To capture 

detection performance at only high detection rates, a partial AFAR can be 

calculated by averaging the false alarm rates up to a given level of detection. 

 No single metric can perfectly capture the performance of a detector.  

Study of detection and false alarm rates can be helpful in performance 

comparisons, but raw results remain the most descriptive and likely the most 

involved method of analyzing detection results.  

 

2.3.3 Multivariate Normality Tests 

 The assumption that a given data set has been drawn from a normal 

distribution is central to statistical processing techniques across many 

disciplines.  As a result of the increased use of multivariate data over the past 

fifty years, many methods to test a data set for univariate normality (UVN) have 

been extended and new tests developed for the multivariate normality (MVN) 
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case.  The Chi-Squared, Kolmogorov-Smirnov, Anderson-Darling, Cramér-von 

Mises, Shapiro-Wilk, Mardia, and Henze-Zirkler tests are among those used in 

fields like communications, business, medicine, and imaging to test how well a 

univariate set of data can be modeled by a Gaussian distribution [Mecklin and 

Mendfrom, 2004].  MVN tests can generally be separated into four categories:  

graphical examination with correlation coefficients, tests for goodness-of-fit, 

skewness and kurtosis tests, and consistent procedures based on the empirical 

characteristic function [ibid].  The fact that more than fifty such tests are 

documented in the literature alone is an indication that the MVN problem is 

complex and not well refined. 

 To select the most appropriate test for HSI backgrounds, it is important 

to consider the dimensionality and number of observations in the data.  For 

instance, tests such as Royston’s H test expand the Shapiro-Wilk W test from a 

maximum of 50 to a maximum of 2000 bands [Royston, 1982].  Extensions of 

the Kolmogorov-Smirnov (KS) test are also meant for large amounts of data and 

therefore may be more appropriate for HSI MVN testing.  Another popular test is 

Mardia’s PK test, which employs the third and fourth statistical moments, skew 

and kurtosis, to respectively characterize asymmetry and the heaviness of the 

“tails” of the data.  Data sets with negative kurtosis are considered “light tailed” 

and those with positive kurtosis are “heavy tailed.”  While third and fourth 

order statistics can provide an indication of normality, the single metric result 

of these tests has been shown not to provide the most consistent measure of 

MVN [Mecklin and Mendfrom, 2004]. 

 A simple yet computationally exhaustive way to judge MVN is to examine 

the normality of each variable in linear combination with every other variable.  
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When dealing with HSI data, the great numbers of band combinations, ∑
=

n
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, 

makes this approach practically infeasible.  A true measure of MVN would 

require a characterization of every combination.  In an attempt to simplify the 

problem, it is tempting to consider the normality of each band independently.  

The chi-squared MVN test can be easily employed to do this, but it is important 

to fully understand how the test is performed and what the results indicate. 

 The chi-squared method exploits the fact that the distribution of squared 

error (statistical distance from the mean) in a data set that is sampled from a 

normal distribution will behave like a chi-squared random variable [Johnson 

and Wichern, 2002].  The familiar squared statistical (Mahalanobis) distance is 

measured by 
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and can be compared to a chi-squared distribution given 
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where x is the independent variable of the distribution (not the pixel vector),  p 

is the degrees of freedom (number of bands) and Г is the gamma function.  

Similar to the quality measure given by a Q-Q plot (except in this case the two 

quantiles are the distance metric and the chi-squared probability), the two 

metrics will exhibit a linear relationship with unity slope and zero bias, where 

divergence from linearity indicates a deviation from normality.  In order to 

construct this plot, the Mahalanobis distances are ordered smallest to largest 

and plotted versus the upper percentiles of the chi-squared distribution given 

by 
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)/)2/1((2 njn +−χ  2.31 

where n is total number of bands and j is the number corresponding to the 

ordered statistical distance [ibid].  A notional example of a chi-squared plot is 

shown in Figure 2.5, where the data seem to follow the dashed line well, 

indicating normality. 
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Figure 2.5 Example Chi-Squared Plot for MVN Test 

 

The chi-squared plot is a valuable visual tool for identifying gross deviations 

from normality and outliers in the data.  Without comparing any of the bands in 

the data, however, it is misleading to attempt to define a metric of MVN based 

on a plot of within-band UVN.  This being said, applying a single metric 

characterizing the MVN of several data sets for the purpose of comparison may 

be valid. 
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 Quantifying the “straightness” of the chi-squared line or the goodness-of-

fit (GoF) of the data to a normal distribution is often accomplished using a 

correlation coefficient test.  This test reduces the chi-squared curve to a single 

metric by relating the expected value (χ2) to the value in the distribution (d2) by 

the equation  
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where a lower value indicates greater multivariate normality [Snedecor, 1989]. 

 

2.4 Background Characterization 

 Characterization of scene background involves a decision about how data 

will be collected that best represents the “true” background from which the 

target must be distinguished.  This data is then used in the calculation of 

background statistics.  When implementing an adaptive matched filter, image-

wide covariance is the most common method for background characterization.  

Estimating the background based on all of the variability in the scene is a good 

starting point, but is overall a poor method of background characterization.  

Improvements on the scene-wide method have been shown to increase detection 

performance dramatically [Reed and Yu, 1990], [Ashton, 1998], [Manolakis et 

al, 2001], [Funk et al, 2002].  Two types of techniques for improved background 

statistics estimation are easy to identify in the literature: target exclusion and 

data subsetting.  Target exclusion methods assume that background error is 

due to the presence of target pixels in the data from which background 

covariance is calculated.  Data subsetting methods assume that error in scene-

wide covariance is the result of a mismatch between the background and the 
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source of interference as well as a failure of the Gaussian approximation for the 

scene-wide data.  The scene-wide data can be divided into subsets by drawing 

either a spatial or a spectral distinction between pixels.  By drawing these 

distinctions, pixels from the scene are selected to be included or excluded from 

the background statistics data pool.  Subsets are generally more MVN than the 

full scene, and may be selected to match the interfering signal.  The difference 

between the spatial and spectral subsetting techniques is the type of interfering 

signal they are attempting to match.  Techniques which characterize 

background using a spatial subset of the data surrounding a test pixel assume 

that interference is caused by the subpixel mixing of a target with its 

surroundings.  Techniques which characterize background by spectrally 

subsetting the data assume that interference is caused by target-like pixels in 

the scene.  How these assumptions drive the application of detectors using 

these background characterization techniques is a central question of this 

study and will be discussed in a later section. 

 

2.4.1 Spatial Subsetting 

 One simple method to improve over scene-wide statistics is to select a 

spatial subset of the image by hand to serve as the background.  Selecting a 

part of the image that was collected before reaching the target area ensures that 

targets are not present in the background and that the species present in the 

background are representative of those around the target.  Such a spatial 

subset of the image would likely be more multivariate normal than the full 

scene, providing better data for the background statistics of the matched filter.  

For test data sets, this method is employed by selecting a region of the image 
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known not to contain target with the assumption that a target approach region 

would be available in real-world operational imagery.  This target approach 

method has been shown to provide improved detection results [Manolakis et al, 

2001] over full scene statistics, and serves as a good baseline for background 

characterization.   

 The RX algorithm, named for its developers Irving Reed and Xiaoli Yu, 

can be used for both anomaly detection and target detection [Reed and Yu, 

1990].  It is a combination of the spectral and spatial matched filters, using an 

anomaly detection formulation of the GLRT and a convolution kernel set to 

match the assumed shape of a fully resolved multi-pixel target.  The anomaly 

detection form of RX does not rely on a known target spectrum d, and 

commonly takes the form 

)()( 1 µµ −Σ−= − xxRX T  2.33 

During development of RX, violation of the normality assumption was a primary 

consideration in the formulation of the problem.  To improve the detection 

process, a sliding window was used to spatially subset the data.  The 

underlying assumption is that the background can be forced into Gaussian 

behavior by assuming a non-stationary mean [ibid].  This is somewhat intuitive 

considering that intra-class variation is more normal than inter-class variation 

and a spatial subset of the scene is likely to contain fewer classes.  It has also 

been demonstrated that this method of local mean subtraction intrinsically 

increases the MVN of the data [Li et al, 2003].  According to the construction of 

the RX algorithm, the mean of the background can be calculated within a 

windowed subset of the data and the more slowly varying covariance can be 
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calculated from a larger, target-free subset and approximated by a diagonal 

matrix.  The third moment (approaching zero) was used to approximate the 

normality of the spatial subset.  Minimizing skew in this way was assumed to 

“create a distribution which is as close to Gaussian as possible” [ibid].  The 

spatial matched filter portion of the algorithm is not applicable to either the sub 

pixel problem or the characterization of background, and therefore is not a 

consideration for this study.   

 

2.4.2 Spectral Subsetting 

 Many new target detection algorithms have sought to exploit the methods 

of HSI classification to gain advantage in the matched filter detection problem 

[Funk et al, 2002], [Ashton, 1998], [Stein et al, 2001].  The premise for 

improved detection results through pre-clustering (spectrally subsetting) is 

achieving greater target contrast by comparing the target only to pixels in a 

single class.  While at first this may seem as though it would confound the 

problem, it is easy to determine that while a low contrast, low abundance target 

may be lost in a cluttered scene and indistinguishable using scene-wide 

statistics, any spectral deviation from a single class will be easy to identify and 

accentuate using class statistics.  The expectation is that subsetting techniques 

may provide a more normal background, populating the covariance matrix with 

data better fitting the Gaussian assumption, and thus normalizing the target 

and pixel spectra with spectral variances that better differentiate between target 

and background species.  The AMF can be adapted to incorporate results from 

a k-means clustering by 
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where k is the class number, and values are mean subtracted using class 

means.  This method was shown to increase the performance of several forms of 

the adaptive matched filter when applied to HSI for plume detection [Funk et al, 

2001]. 

 A full discussion of plume detection phenomenology is outside the scope 

of this work, but the significant differences in the type of mixtures involved in 

plume detection versus hard target detection reveals an important difference in 

the application of pre-clustering.  The best background to use in plume 

detection can be derived from the ground class over which the plume passes.  

For large plumes, different regions of gas may pass over (and mix with) different 

ground classes.  To detect the plume over any ground class, the Funk k-means 

pre-clustering method applied each cluster individually as a background, and 

then fused the results to form one detection statistic image.  Unlike effluent 

species, the best background for hard targets is likely to be represented by a 

single class.  However this class may be selected, it is used to model and 

suppress false alarms in the scene or sub pixel mixing from a single class.  

Given the differences in the two detection problems, the plume detection results 

using k-means pre-clustering do show proof of concept.  Along with these 

results, it was noted that improvement could be made over the k-means method 

by use of a classification algorithm that exploits both mean and covariance 

[ibid]. 

 The k-means pre-clustering technique has also been used to improve 

anomaly detection results in multispectral IR imagery [Ashton, 1998].  In the 



 35

same study, an adaptive Bayesian clustering algorithm was also applied in an 

attempt to improve on the k-means results.  The Bayesian clustering algorithm 

used a probabilistic model given by 

)()|()|( kPkxPxkP =  2.35 

where the statistical pixel distribution for P(x|k) was given by a multivariate 

normal distribution and the probabilistic region distribution, P(k), was 

generated with a Gibbs random field.  The k-means results were used to seed 

the algorithm, and several other techniques were applied to reduce the 

computation time, which can be prohibitive for this type of stochastic relaxation 

classifier.  This study used pre-clustering to search for hard targets, 

necessitating a method of background class selection.  To arrive at a single set 

of statistics for the detector, the classification result for each test pixel was used 

along with a grid method to interpolate between statistics of grid points 

surrounding each test pixel.  Anomaly detection was performed using the pre-

clustered data by identifying the pixels least likely to fall into the background.  

The ROC results are given in Figure 2.7, showing an improvement in anomaly 

detection over a standard RX result through spectral clustering (k-means), and 

an even greater improvement through Bayesian clustering. 
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Figure 2.7 ROC Curve Comparison of RX, K-Means, and Bayesian 
Pre-Clustering Applied to Anomaly Detection [Ashton, 1998] 

 

 The SEM algorithm, which uses mean and covariance to classify HSI 

data, has also been used for pre-clustering prior to applying a matched filter.  

The RX anomaly detector was adapted to operate on data pre-clustered into k 

SEM classes, taking the form 

)()( 1
kk

T
kk xxRX µµ −Σ−= −  2.36 

where µk and Σk are the mean and covariance of each class [Stein et al, 2001].  

The class statistics used for each test pixel were derived from the class to which 

the pixel was assigned.  Therefore, just as the traditional RX algorithm 

identifies pixels which are dissimilar to their surroundings, this pre-clustering 

implementation of RX identifies pixels which are dissimilar to their SEM class.  

In the results of this study, improvement over scene-wide statistics was not 

explicitly stated because the technique was used as part of a fusion of RX and 

SEM detectors.   

ROC Curve Comparison 
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 With the ability to achieve improved detection results through both 

spatial and spectral subsetting well established, the advantages of the two 

algorithms was simultaneously exploited through fusion.  Fusion rules, 

including model selection, AND and OR, and joint-density, were employed to 

create decision boundaries encompassing thresholds for each algorithm and for 

a normality metric.  At thresholds set for low levels of false alarms (10-100 per 

km2), this technique reduced false alarms by .25 to 2 orders of magnitude [ibid].  

Figure 2.8 is an example ROC curve from the fusion results, showing that 

fusion provided better detection performance, especially at lower false alarm 

rates. 

 

 

 

Figure 2.8 ROC Comparison of, RX, SEM,  
and Fusion (FR) Algorithms [Stein et al, 2001] 

 

2.4.3 Target Exclusion 

 Another method for improving estimation of background covariance is 

the exclusion of target pixels from the background data.  If target pixels are 

ROC Curve Comparison 
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included in an estimation of background variability, the characteristic spectral 

features of the target may be suppressed along with the background and the 

matched filter results will be useless.  One common target exclusion method 

involves the manual selection of a region of the data where target is known not 

to be present (i.e. the target approach region) [Manolakis et al, 2001].  While 

this method ensures that the target will not affect the background covariance 

estimation, it is largely dependent on the user’s selection of a region that best 

characterizes background.  An automated form of target exclusion involves the 

use of a non statistical detector to detect target-like pixels, which can then be 

excluded from the calculation [Manolakis et al, 2000].  Both of these methods 

will attempt to ensure target spectra are not included in the background and 

will therefore not adversely affect the covariance estimation. 

 As described in previous sections, techniques involving spatially or 

spectrally subsetting the scene data can also be employed to better estimate 

background covariance.  These methods have been shown to provide improved 

detection results [Reed and Yu, 1990], [Manolakis et al, 2000].  However, target 

contamination problems arise when applying techniques that restrict the 

amount of data used to estimate the matched filter covariance.  First, in a 

smaller data pool the target spectra will have greater statistical influence on the 

covariance, thus increasing the importance of employing a target exclusion 

method.  Second, the number of data points used to calculate the covariance 

may not be sufficient to generate a statistically stable covariance.  If the 

number of pixels in a subset is less than the number of bands, the covariance 

matrix will be singular and cannot be inverted, and if the number of pixels is 
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only a few times the number of bands, the matrix is usually highly elliptical and 

errors resulting from its use can be significant [Kuo and Landgrebe, 2002].   

 

2.4.4 Adaptive Covariance Estimation 

 The concept of adaptive covariance estimation was originally developed to 

generate class statistics from small groups of training samples for supervised 

classification applications.  In a supervised classification, the user may not 

specify enough pixels to enable calculation of a stable, non-singular covariance.  

Consequentially, a variety of techniques were established to estimate the 

covariance of small training groups in order to seed quadratic classifiers with a 

more accurate covariance.  The same concept may be applied to the calculation 

of covariance from a small data subset for the purpose of seeding a quadratic 

target detector with a more accurate characterization of background. 

 The performance of a given covariance estimator is largely dependent on 

the specific scene content.  In some cases, where the covariance of all classes is 

very similar, the scene-wide covariance may be the most accurate.  In other 

cases, mixtures of covariance from several classes may best represent truth.  

The best method or mixture to use for a given data set will depend on the true 

statistics of the classes, the number of features, and the number of samples in 

the subset [Hoffbeck and Landgrebe, 1996].  These parameters, and their 

influence on detector output, cannot be known for each case.  This is what 

drives the need for an adaptive covariance estimator, which might be seen as a 

way to compromise between scene-wide and subset statistics.  Regularization is 

the process of reducing the amount of estimation made during covariance 
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calculation by assuming a mixture of statistics.  A regularization (or mixing) 

parameter i can be used to scale the relative amounts of each covariance by 

piiii Σ+Σ−=Σ αα )1(ˆ  2.37 

where iΣ̂ is the improved estimate of class i covariance, Σi is the covariance of 

class i from the samples, and Σp is the average covariance of all classes called 

the pooled covariance [Tadjudin and Landgrebe, 1999].  One might note that 

this mixture of covariance shares the form of the SMM for endmember 

mixtures.   

 These types of covariance estimators may apply to the target detection 

problem in scenes where targets will contrast with pure endmembers but not 

with mixtures of those endmembers.  In other words, if the target is spectrally 

distinct from dirt and from grass, but spectrally similar to dirty grass, a spectral 

subsetting of the data that captures several levels of dirty grass will be helpful 

in distinguishing the target.  This type of analysis was applied to develop a new 

type of detector that includes target statistics, called the Finite Target Matched 

Filter (FTMF) [Stocker and Schaum, 1997].  In this study, the SMM was used to 

characterize mixtures of classes in order to better discern low contrast targets.  

Figure 2.9 is a scatter plot showing several mixed classes surrounded by ovals 

and a set of target pixels that can be detected due to the improved analysis of 

background statistics.  This type of detector, which involves target statistics, is 

beyond the scope of this research, but the techniques used to characterize the 

background using detailed analysis of class mixtures is directly applicable.  
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Figure 2.9 Low Contrast Target in Mixed Pixel 
Scatter Plot [Stocker and Schaum, 1997] 

 

2.5 Background and Literature Review Summary 

 Literature in the field of hyperspectral image processing abounds with 

techniques that may be used to preprocess target detection data, as well as 

techniques that may be employed to improve target detection results.  

Atmospheric compensation and dimensionality reduction may be used to seed 

detectors with smaller, more manageable data sets in units that are convenient 

for matched filtering.  Several types of detectors have been developed in the 

field, many of which use the stochastic approach for modeling scene 

background.  These detectors can be compared using a number of evaluation 

metrics, the most popular of which is the ROC curve.  The statistical structure 

of the background data and the detection results also can be evaluated to 

Scatter Plot of Mixed Pixels 
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provide insight into the extent that the underlying assumptions of the process 

are violated.  A collection of techniques to perform preprocessing, matched filter 

detection, and evaluation of results forms the foundation for a study of 

background characterization methods. 

 In an attempt to improve detection results beyond the formulation of new 

types of matched filters, the research community has developed several 

methods for better characterizing scene background.  That is to say, an attempt 

has been made to more carefully select the data that is to be called background, 

and improve the method for estimating the statistics of the background from 

that data.  Excluding targets and subsetting the data either spatially or 

spectrally are the types of methods that have been tested and reported in the 

literature.  These background characterization methods are interleaved with 

techniques in image classification, background independent target detection, 

anomaly detection, and adaptive covariance estimation.  Each of these related 

tools have more than one algorithm by which they can be employed, and may 

be used alone or in combination when applied to target detection. 

 The next section will address how these many techniques have been 

organized to form an experiment testing the current state of background 

characterization.  Along with current methods, a few new approaches will be 

described which combine concepts from several existing algorithms.  Beginning 

with the selection of targets and data upon which to operate, and continuing 

with a description of the implementation of methods described in the literature, 

an approach to the experiment will be framed in a tractable set of steps leading 

to conclusions about the practical application of background characterization 

for matched filter target detection. 
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3.0 Experimental Approach 

 The algorithms and processing steps required to perform a comparative 

experiment of background characterization methods fell into four progressive 

categories: selection and preprocessing of the test data, matched filter 

implementation, the implementation of each method of background 

characterization, and the implementation of evaluation tools to analyze 

background data and detection results.  Existing tools were used exclusively for 

the preprocessing of data, while new tools were created for all of the techniques 

in the remaining categories.  Some parts of the experiment required 

customization of existing algorithms, while other parts necessitated the 

development and implementation of new algorithms.  The following sections will 

detail the rationale behind the decisions made in the selection and 

implementation of the algorithms used in the experiment.  As much as possible, 

the trade-spaces for these decisions will be discussed to allow future work to 

adapt these implementations to further study the background characterization 

and target detection problems. 

 

3.1 Experimental Data 

 Evaluation of target detection algorithms may be accomplished by two 

methods.  First, a general test for detection power may be derived for a 

universal application of the detector.  Second, an empirical test may be 

performed on a specific data set and generalizations assumed based on the 

outcome.  Without using real data, the theoretical detection capability of a 

detector can be demonstrated and comparisons of techniques have been made 

by making some assumptions which simplify the detection problem [Manolakis 
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and Shaw, 2002], [Bajorski, 2005].  However, given the lack of a realistic data-

independent test for target detection capability, the empirical method becomes 

the only option.  Without a fully general test, the selection of an appropriate HSI 

data set to test empirically is a critical step in performing algorithm evaluation.  

The types of targets and backgrounds existing within a specific data set will 

largely determine the results of target detection.  Without a widely accepted 

metric for HSI quality, characterizing a data set is a difficult task.  There are a 

couple of solutions to this problem which prevent the need for a detailed 

description of the experimental data.  First is selection of a data set that is most 

commonly used in the field or considered a “gold standard” for testing a given 

problem.  Second is the use of synthetic data which can be easily characterized 

with a few straightforward parameters.  For this study, a pair of "gold standard" 

data sets were used.  Specifically, data from the Forest Radiance I and Desert 

Radiance II experiments were used to test the background characterization 

techniques. 

 

3.1.1 The Canonic Data Set 

 The Forest Radiance I and Desert Radiance II experiments were 

conducted as part of the Hyperspectral MASINT Support to Military Operations 

program, using the HYDICE sensor to obtain hyperspectral imagery for use by 

the Department of Defense.  The utility of the imagery captured in the Forest 

Radiance I experiment for evaluating hyperspectral algorithms has been well 

established in the literature [Bergman, 1996], [Chang and Du, 1999], [Healey 

and Slater, 1999], [Manolakis and Shaw, 2002].  The Forest Radiance I data 

that was used is part of a Canonic data set, provided to RIT by MIT Lincoln 
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Laboratory.  The 210 band HYDICE imagery was collected over the U.S. Army 

Aberdeen Proving Grounds, Maryland, in August 1995.  Several data cubes 

were taken during the experiment, including runs at varying altitude.  To allow 

for both fully resolved and sub pixel targets, the lowest altitude pass, labeled 

Run05, was used for this study.  Spatially, the Run05 image covers 320 by 

1280 pixels, which are approximately one square meter.  Spectrally, it covers 

the VISNIR portion of the EM spectrum from 0.4 to 2.5 µm, with spectral bands 

about 0.010 µm wide [Manolakis and Shaw, 2002].  Figure 3.1 is a three band 

example image taken from Run05 of the Forest Radiance I data set.  

 

 

Figure 3.1 Example Image from Forest Radiance I Data Set 

 

The scene is composed of grass, soil, trees, roads, and twenty-two distinct 

targets.  The scene provides a relatively uncluttered background with only a 

handful of ground cover types; a consideration which will play an important role 

in generalization of algorithm results.   

 The Desert Radiance II data also contained passes at several altitudes 

and was included in the Canonic data set.  Again, the lowest altitude pass, 

labeled Run03, was used.  This cube has pixel dimensions of 320 by 960 and 

roughly the same spatial geometry as Forest Radiance I.  The same sensor was 
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used, so the data has the same spectral characteristics.  A three band example 

of Run03 from the Desert Radiance II experiment is shown in Figure 3.2.   

 

 

Figure 3.2 Example Image from Desert Radiance II Data Set 

 

The desert scene is composed of sand, scrub brush, and road and contains 

fourty-eight distinct targets.  As a benefit of being collected during the same 

program, both the Forest and Desert Radiance data sets share many of the 

same targets.  The extensive ground truth available for the image includes 

measured spectra for the targets with corresponding target truth maps.  The 

truth maps separate target pixels into five categories.  From these, truth maps 

were established by the numbering convention in Table 3.1. 

 

Pixel Category Truth Map Value 
Guard -1 

Background 0 

Sub Pixel Targets 2 

Targets in Shadow 4 

Targets with Solar Glare 6 

Fully Resolved Targets 8 

 
Table 3.1 Truth Map Pixel Value Assignments 
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Fully resolved targets were pixels selected to contain 100% abundance of the 

target signal, glare targets were pixels containing some degree of specular solar 

reflection (usually from vehicle windshields), shadowed targets were pixels on 

the target that were in the shadow of another part of the target, sub pixel 

targets were pixels containing less than 100% abundance of the target, 

background pixels were those known not to contain target, and guard pixels 

were pixels, usually surrounding the target, with unknown content.  For the 

purpose of the experiment, guard pixels were ignored when calculating results.  

Figure 3.3 is a false color example of a target truth map, where guard pixels are 

black, sub pixel targets are yellow, shadow target pixel are blue, and full pixel 

targets are red. 

 

 

Figure 3.3 Example Target Truth Map 

 

3.1.2 Canonic Data Set Preprocessing 

 The purpose of the Canonic data set was to provide an equal footing for 

evaluation of exploitation algorithms.  In order to level the field for algorithms 

operating in reflectance space, several atmospheric compensation algorithms 

were run on the data and analyzed.  Likely due to the calibration panels present 
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in the scenes, the empirical line method was shown to produce the least error 

[MIT Lincoln Laboratory, 2004].  Based on this analysis, the ELM compensated 

data provided in the data set was used for the study.   

 As previously mentioned, the raw HYDICE data contained 210 spectral 

bands across the VISNIR portion of the spectrum.  To eliminate atmospheric 

absorption features and bands degraded by sensor artifacts, the Canonic data 

set included bad bands lists which cut the Forest and Desert Radiance images 

to 145 and 144 bands respectively.  In order to maintain the statistical integrity 

of these images, the full spectral dimensionality was used as much as possible.  

With the exception of the use of PCA to analyze the data and in a few cases to 

speed classification, no further dimensionality reduction was performed. 

 The next step to prepare the data for exploitation was the construction of 

target spectra from the collected ground truth.  Ground truth data files in the 

data set contained spectra with 430 bands.  While this provided thoroughly 

over-sampled data, the band centers of the truth measurements did not align 

with HYDICE band centers for either run.  This necessitated an interpolation 

between bands in the measurements.  While many types of interpolation and 

convolution techniques were available, the ENVI spectral resampling tool proved 

convenient and sufficiently accurate.  Bad bands lists were also applied to keep 

the same 145 or 144 bands as the imagery.    Figure 3.4 shows a raw ground 

truth spectrum and the results of resampling and bad band exclusion.   
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Figure 3.4 (a) Raw Ground Truth Spectrum and (b) Same Spectrum after 
Resampling and Bad Band Exclusion. 

 

Several ground truth measurements were made on each target to provide more 

accurate calculation of a target truth spectrum.  For homogeneous targets like 

panels or tarps, averaging these spectra served to reduce the measurement 

noise and provide a single reliable spectrum.  This process was much more 

questionable when considering heterogeneous targets such as camouflage 

netting or vehicles.  The camouflage measurements were undoubtedly affected 

by the measurement location on the camouflage and voids in the netting must 

have made it difficult to capture a measurement untainted by the subsurface.  

For the vehicle targets, locations of the measurements were documented and 

separated into categories.  In order to construct a single target spectrum, only 

measurements taken on the main part of each vehicle target were averaged.  

For example, the few measurements taken on the turret of a vehicle were 

excluded and the many measurements taken on the body were averaged.  This 

technique is certainly a source of error in the detection chain, especially for the 

low altitude runs, where there are many fully resolved pixels on each target.  

For the high altitude runs, the spectral signatures are actually averaged during 

collection when they are captured in a single detector element, a fact which has 
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been used to explain better performance at higher altitudes when using 

averaged ground truth spectra [Cisz et al, 2005].  For the most accurate 

detection results, a separate target class could be established for each type of 

target spectrum on a heterogeneous target, but for the sake of practicality all 

pixels on a target were sought using the averaged spectra of the dominant 

target region.   

 Another target spectrum consideration to note is the use of a spectral 

median function vice the spectral mean to establish a single target spectrum.  

The spectral median is the spectrum from a set which contains the most 

occurring median values in a band-to-band comparison.  Assuming that most 

of the variability between several measurements on a single target is due to 

illumination, the spectral median would capture the "middle" illuminated case.  

Averaging the set of spectra results in an artificially smooth target spectrum, 

while the spectral median preserves the shape (and unfortunately, the noise) of 

a real ground truth measurement.  Figure 3.5 shows a collection of ground 

truth spectra measured for a representative target in the scene.  The figure 

includes the spectral mean and median of the set for comparison. 
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Figure 3.5 Collection of Ground Truth Spectra for a Single Target with the 
Spectral Mean (Solid) and Spectral Median (Dashed) Shown. 

 

No comparison between these methods or other methods that may be used to 

combine several measurements into a single target spectrum was performed as 

part of this study.  However, it is important to note that the spectral averaging 

method used is not the only option available. 

 The final preprocessing step involves the number and variety of targets 

within the scene.  The collection experiment included a great number of targets 

which were designed to give many test cases to detection algorithms.  One 

possible use of the data set is to test the ability of an algorithm to distinguish 

between several similar man made materials, i.e. two different types of green 

cloth.  Another plausible use is to isolate each of the targets and test the ability 

of an algorithm to locate the target in a natural background.  This latter 

technique was used in this study through the simple method of assigning all 

target pixels -- aside from those being sought -- as guard pixels.  As previously 

noted, guard pixels were excluded from the computation of results, and thus 
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not considered detects or false alarms.  While this does artificially inflate the 

detection rate by using an entirely unrealistic level of ground truth (specifically, 

the location of all placed targets in the scene), in actuality it only changes the 

starting point of the experiment by changing the test data set.  This eliminates 

the cases of false alarms on other similar targets in the scene equally for all 

algorithms and improves the overall shape of the ROC curve. 

 

3.1.3 Target Selection 

 One of the strengths of the Forest and Desert Radiance data sets is the 

number and variety of targets they contain.  Being limited by computation 

power and time, an effort was made to limit the number of targets investigated 

while preserving the benefit of target variety.  To do this, each target in both 

data sets was detected using the SAM algorithm.  This background-independent 

matched filter provided a simple and fast method of generating a detection 

statistic image from which a ROC curve could be generated.  Figure 3.6 (a) and 

(b) show the ROC curves for all targets in the Forest and Desert Radiance 

scenes respectively. 
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SAM ROC Curves for Run05
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(a) 

SAM ROC Curves for Run03
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(b) 

Figure 3.6 Spectral Angle Mapper ROC Curves for All Targets in 
(a) Forest Radiance and (b) Desert Radiance Images. 
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Average false alarm rates were calculated from each of the curves and tabulated 

along with the number of target pixels and a team of analysts from the RIT 

target detection group selected a subset of the targets to serve as representative 

of the set.  Table 3.2 shows the AFAR results and pixel counts for each target, 

with the selected targets highlighted in red.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)       (b) 
 

Table 3.2 Target Name, AFAR and Number of Target Pixels for All Targets in the  
(a) Forest Radiance and (b) Desert Radiance Images. 
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In two cases, several of the targets were the same class of vehicle and were 

assumed to be similar in composition and paint characteristics.  These two 

sets, VF1, VF3, and VF4 (labeled VF134) as well as V1 through V6 (labeled V1-

6) were combined into two single targets by averaging all available ground truth 

spectra and detecting all targets in the class.  In general, an attempt was made 

to select targets of differing size, type, and difficulty of detection.  While all of 

the targets were not used for all of the examples, only the targets selected were 

examined in any of the experiments. 

 

3.2 Matched Filter Implementation 

 The computer programming involved in the implementation of a matched 

filter was a relatively straightforward process.  Using a matched filter to 

generate a detection statistic map is as simple as an inversion followed by a 

series of matrix multiplication and simple algebraic operations repeated on each 

pixel in the scene.  The process of deciding which statistics are appropriate and 

how they are to be calculated and inverted is not as simple as plugging them 

into the matched filter equation.  Differences in the type of statistics employed, 

the method of calculation, and the method of inversion can lead to dramatically 

varying results.  This necessitates a careful examination of these decisions and 

a study of the tradeoffs.   

 

3.2.1 Mean Centering and Covariance Versus Correlation 

 Two discrepancies among techniques in the literature are the use of a 

covariance versus a correlation matrix and the omission or inclusion of the 
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mean.  For instance, the GLRT detector may be implemented in either of the 

following manners. 
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While these may seem to be separate decisions, it is simple to establish a link in 

the mathematics and physical logic behind this decision.  First, consider the 

method of calculating both types of matrices. 

)}(){( µµ −−=Σ xxE T  3.3  

}{ xxER T=  3.4  

From the expectation values, we see that covariance works in a mean 

subtracted space while correlation does not.  When substituting these 

expectation values into the statistical distance equation, the expectation value 

of the distance is unity when the target is equal to the test pixel and the 

covariance is ideally formulated, i.e. 
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When plugged into the full GLRT expression, the expectation value is actually 

one-half, due to the denominator of the expression.  The same substitution can 

be made for the correlation matrix and the non mean subtracted version of the 

GLRT. 

 A physical rationale behind the decision to mean subtract is not widely 

explored in the literature.  One simple rationale is related to the projection of 
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the data into reflectance space by atmospheric compensation.  Errors in 

compensation lead to unreliable absolute magnitudes of reflectance.  The 

correlation matrix has not removed the magnitude of the data and may 

therefore carry this error through.  On the other hand, the covariance matrix 

puts both ground truth spectra and scene spectra in a mean centered space 

and thus may lessen the effects of compensation error.  Another rationale for 

mean subtraction is to link this decision with the perceived contrast of the 

target.  If the target is very dissimilar compared to the background, the (x-µ) 

term will be substantial when testing a target pixel (i.e. when x = d), but will be 

very small when the test pixel is a background pixel (i.e. when x = E{x} =  µ).  

However, if the target spectrum is very similar to the background, the (d-µ) 

term will be a highly variable and small value (ε), which will be matched to the 

natural target variability (n) in the test pixel.  In equation form,         
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which is obviously not a good measure of target presence in a target test pixel.  

Additionally, the ε term may be a better match to the mean subtracted pixel 

spectrum of a non-target pixel.  Searching for a target with a flat or weak signal 

like ε increases susceptibility to false alarms.  Another proposed mean 

subtraction scheme is to mean subtract the test pixel, but not the target 

spectrum.  This implementation of the matched filter would take the form 
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and will be called the low contrast mean subtraction technique.  This filter is 

certainly not optimal as it attempts to match the original target spectrum with a 
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mean subtracted pixel, normalized by the mean subtracted covariance.  For low 

contrast targets this method may be preferable to the matching of ε with the 

mean subtracted pixel.  The application of one of these methods will thus 

depend on a reliable measure of target contrast.  The development of such a 

metric and the respective tailoring of the detection statistics will be introduced 

in this study, but a comprehensive examination of this relationship has been 

left for future work.  For the main portion of the experiment, the covariance 

matrix with mean subtracted spectra was the statistical set chosen, accepting 

the possibility of poor performance for low contrast targets.  With this decision 

made, the next step is to examine the method of covariance calculation.  

 

3.2.2 Method of Covariance Calculation 

 Four methods of covariance calculation were examined to establish a 

comparison between two programming platforms; an estimation technique and 

the type of variable (number of carried significant digits).  IDL and Matlab both 

contain covariance functions which perform a traditional covariance 

calculation, both normalizing by 1/(n-1) where n is the number of samples.  

Another common method of covariance estimation is to derive the covariance 

from the correlation matrix.  The two can be directly related by expanding the 

inner product of the covariance matrix equation, discarding the cross terms, 

and then pulling out the n-independent means to produce 
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or 
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where the ~ denotes estimation due to loss of the cross terms and ^ denotes 

estimation from a sample data set.  It should be noted that while in the case of 

the expectation value, the cross terms cancel; in the case of estimation from 

sample data, discarding the cross terms will cause error.  Finally, all 

calculations can be done in floating point or double precision variables.  A 

simple experiment was used to determine the amount of error in each of the 

methods in order to establish confidence in one method.   

 To test the error involved in each method, a synthetic data set was 

generated from a given covariance matrix and each routine was used to 

calculate a covariance to be compared to the original.  To generate the target 

covariance matrix, the IDL covariance routine was used to calculate the 

covariance of a portion of the Forest Radiance I data.  Eigenvalue decomposition 

was performed on the covariance by the equation 

ΦΛΦ=Σ T
 3.10  

where Φ is the matrix of eigenvectors and Λ is a diagonal matrix containing the 

eigenvalues.  In order to form a random pixel ŷ that comes from a data set with 

covariance Σ, a random vector x was formed with a zero mean and identity 

covariance was formed, and Λ was divided into Λ1/2 Λ1/2, to give 

xyxxyyE TTT 2/12/12/1 ˆ]ˆˆ[ ΛΦ=∴ΦΛΛΦ==Σ  3.11  

where x was generated by the IDL “RandomN” random number generator.  This 

process was repeated, with a changing seed for the number generator, to 

construct an image.  The image in Figure 3.7 is a sample from the 170 band 

120,000 pixel test data set generated by this process.  For this experiment, the 

decision to use 170 bands versus 145 was driven by the selection of a different 

bad band exclusion set from the same Forest Radiance I data. 
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Figure 3.7 Three Bands from the Test Data Set 

Using this synthetic data with a known covariance matrix, an root mean 

squared difference (RMSD) comparison was made between algorithms.  The 

RMSD and later the root mean squared error (RMSE) were calculated by the 

same equation 

( )∑ Σ−Σ= 2
2

1
jik

RMSE  3.12  

where the test covariance Σi was compared to another test covariance, or the 

target covariance Σj.  The table below shows the RMS difference between 

routines run on the test data set. 

 

IDL vs. Matlab IDL vs. Σ
~

 Matlab vs. Σ
~

 IDL vs. Flt Mat vs. Flt 

2.976 e-2 2.421 e-14 2.976 e-2 2.054 e-6 2.976 e-2 

 
Table 3.3 RMS Difference Comparison of Covariance Calculations 
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Interestingly the estimation 
TR µµ−=Σ~ seems to have resulted in a very low 

RMS difference compared to the IDL routine.  One possible explanation for this 

is that the method of constructing the test data was conducive to low error by 

this method of estimation.  For real-world data sets, this estimation is not 

expected to perform as well.   Another observation is that the computationally 

equivalent Matlab and IDL routines seem to have diverged somewhat in their 

result.  To get an idea of the accuracy of the routines, the results were also 

compared to the original covariance from which the data set was created.  The 

table below shows RMSE for each routine. 

 

Matlab IDL IDL Σ
~

 IDL (Flt) 

2.998 e-2 2.734 e-3 2.734 e-3 2.735 e-3 

 
Table 3.4 RMSE Comparison of Covariance Calculations 

 

As expected, the IDL routines, including the estimation and the floating point 

calculation are all very close.  The results also indicate that the IDL routines 

resulted in less RMSE than Matlab for this test data.  This may be due to the 

IDL-generated target covariance.  It should also be noted that while data and 

results were exchanged between Matlab and IDL through double precision 

ASCII formatted text files, the data exchange does represent a possible source of 

error which was introduced only to the Matlab result.  The result is generally 

meant to show that comparable results were achieved using both Matlab and 

IDL.  A full comparison with a more robust data set transferred under more 

controlled conditions would be required to declare a conclusive “winner” 
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between the two platforms, but for the purpose of this study it was concluded 

that the IDL covariance routine was sufficiently accurate. 

 

3.2.3 Method of Covariance Inversion 

 The next step in the process is inverting the covariance matrix in order to 

put it to use in the measure of statistical distance.  The matrix inverse is a 

matrix which, when multiplied by the original matrix, will result in the identity 

matrix (i.e. Σ Σ-1 = I).  This equation may be solved using Gaussian elimination, 

a technique for solving a series of simultaneous equations.  As a simple 

example, consider the matrix equation 
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and it’s Gaussian elimination solution, found by performing the steps: 

row 2 – (1/3 * row 1) results in ⎥
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so x2 = 3 and x1 = 1 

This can only be performed under two conditions: there must be more 

equations than unknowns and the equations must be independent (e.g. not 

related by a simple factor).  When a covariance matrix has been built from 

underdetermined statistics using fewer pixel samples than bands, the result is 

a singular matrix which cannot be inverted by this process.  A simple check for 

singularity is testing for a null result for the determinant of the covariance 
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matrix.  Another sure sign of a singular matrix is one or more zero valued 

eigenvalues.  This second test leads to another method for inverting matrices. 

 The singular value decomposition (SVD) inversion method uses the 

solution to the equation  

TVSVU=Σ  3.13  

where U and V are orthogonal matrices and SV is a diagonal matrix containing 

the singular values.  The utility of this relation in performing matrix inversion is 

shown by 

TVSVU 11 −− =Σ  3.14  

where the inverse of the singular value matrix can be calculated by inverting 

each of the singular values along the diagonal.  In the case of a singular, non-

invertible matrix where at least one case of σi = λi = 0 occurs, the null singular 

value can be set to a minimum threshold and the inversion taken as an 

approximation.  In the case of well formed (non-singular) covariance matrices, 

SVD inversion should theoretically produce a result very close to the Gaussian 

elimination method.  In cases of singular matrices, where Gaussian elimination 

solutions must be forced, the SVD inversion technique may provide better 

results. 

 Another method, tailored for the singular matrix case, is the pseudo 

inverse defined by the relation 

TT ΣΣΣ=Σ −− 11 )(  3.15  

where Σ ΣT is a non-singular matrix that may be inverted by Gaussian 

elimination.  This is the shortest length least squares solution to the 

simultaneous equation problem, and is often called Moore-Penrose inversion 

and denoted Σ# or Σ' [Johnson and Wichern, 2002].  In this study, it will simply 
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be called the pseudo inverse, being sure not to confuse this nomenclature with 

other SVD pseudo inversion algorithms or the common pseudo inverse for 

complex matrices. 

 To test the inversion of the covariance matrix, a simple test was devised 

to multiply the supposed inverted matrix by the original and test how close the 

result is to the identity matrix.  For this test, we will define RMSE by 

( )∑ −ΣΣ−=
21

2

1 I
k

RMSE  3.16  

where I is the identity matrix and k is again the number of bands.  In order to 

study the relationship between number of sample pixels used in the covariance 

calculation and singularity, a number of different sample sizes were taken from 

the Forest Radiance I data set, including 17,000, 1700, 170, and 17 (in order to 

capture 100, 10, 1, and 0.1 times samples as bands).  In order to ensure there 

was no specific data dependency, the data set was divided into twelve sections 

labeled A through L in Figure 3.8. 
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Figure 3.8 Forest Radiance I Inversion Sections 

 

The sections were again subdivided into the previously mentioned subsections, 

covariance matrices were calculated using the IDL routine, the inverse of each 

was taken, and the corresponding RMSE was calculated and plotted versus 

number of pixels.  It was noted that each of the sections provided comparable 
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E F G H

I 
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J K L
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plots, indicating that the covariance inversion was independent of the specific 

data taken from the data set. The plot in Figure 3.9 uses the average RMSE for 

each algorithm over the twelve regions and is in a log-log scale to better show 

the behavior of the three algorithms.  
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Figure 3.9 Comparison of Inversion Techniques 

 

Note that the curved lines of fit do not represent the data (as depicted by the 

points) and are only intended to show the general trend.  It is apparent from the 

plot that IDL (Gaussian elimination) inversion and SVD inversion behave nearly 

identically for well formed covariance matrices and SVD out performs the IDL 

invert function for poorly formed cases, as expected.  Pseudo invert performs 

poorly in the well formed case, but is the algorithm with lowest error for the 

poorly formed case.  For greater fidelity on the behavior of these algorithms, the 

plot in Figure 3.10 shows the region where number of samples approaches and 

exceeds the number of bands.  This plot clearly shows the dramatically 

increasing error in the IDL and SVD algorithms.  Again, while SVD 
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outperformed the IDL routine in the poorly formed case, the pseudo inverse 

prevails with orders of magnitude less RMSE. 
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Figure 3.10 170 Band Comparison of Inversion Techniques 

 

To test this behavior for a different number of bands, the same experiment was 

conducted for twenty-five and then ten bands, the results for which are given 

respectively in the Figures 3.11 and 3.12.  These plots lead to the conclusion 

that the IDL Gaussian elimination invert function should be used for well 

formed statistics and the Moore-Penrose invert should be used in the ill-formed 

case.  This conclusion was considered during implementation of all automated 

background characterization routines where the number of samples was a 

variable.  The number of samples in most backgrounds in this study was 

sufficient to allow for the use of Gaussian elimination, but there were a few 

cases where data-starved backgrounds required the pseudo inversion.  

Detection results based on inversion of singular covariance matrices with the 

pseudo inverse are pointed out in the results section. 



 68

Inversion Comparison (25 Bands)
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Figure 3.11 Twenty-Five Band Comparison of Inversion Techniques 

Inversion Comparison (10 Bands)
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Figure 3.12 Ten Band Comparison of Inversion Techniques 

 

3.2.4 Matched Filter Selection 

 Various forms of the matched filer are present in the literature, and each 

time a new variation is presented, a comparison is performed against other 

filters.  Operating under the hypothesis that background characterization sets 

the statistics and the matched filter only stretches those statistics into more or 

less favorable directions leads to the assumption that improvements in 
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background characterization outweigh improved formulation of the detector.  

This assumption, along with the concept of experimentally holding constant the 

error inherent in a given detector, drives the need to select a single detector and 

apply it to each background characterization technique.  After preliminary 

results indicated that it may outperform some of the other unstructured 

detectors, the GLRT detector was selected as the standard.  It is undoubtedly 

true that different pairings of detectors with background characterization 

methods would provide optimal results, but this type of analysis is left to future 

work. 

 

3.3 Background Characterization Implementation 

 Following the current literature, background characterization methods 

are divided into two categories: spatial and spectral subsetting.  Spatial 

subsetting can be performed either by manual selection of backgrounds in the 

target approach region of the image, or calculating a spatially variant 

background by sliding a window over the data.  Spectral subsetting is 

performed by classification (also called pre-clustering or segmenting) of the 

image in order to derive statistics that better represent background for a given 

target problem.  Spectral subsetting can be used in conjunction with spatial 

subsetting in order to aid in the decision of which cluster statistics to use as 

background.  The MVN of these backgrounds will differ, and all will be an 

improvement over the scene-wide data.  Several methods for excluding targets 

from the background have also been employed in both spatial and spectral 

subsetting techniques.  The numerous techniques to be discussed in this 

section which have been implemented for comparative experimentation, each 
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with their own set of parameters and phenomenology, represent the main 

thrust of this thesis. 

 

3.3.1 Spatial Subsetting Implementation 

 The first method of spatial subsetting to be examined was the so-called 

target approach method.  If the user has some knowledge of the general location 

of the target, part of the image can be captured while the sensor approaches the 

target area.  This serves to ensure the non-existence of target in the 

background, while capturing species likely to be contained in the target 

surroundings.  Given the Forest and Desert Radiance data sets, the target 

approach method was simulated by selecting regions of the image where targets 

are known not to exist.  Figure 3.13 (a) and (b) show the target approach 

regions used in this experiment for the forest and desert scene respectively.   

 

 

 

(a) 

 

 

(b) 

 
 
 

 
Figure 3.13 (a) Forest Radiance Target Approach Backgrounds, 

(b) Desert Radiance Target Approach Backgrounds [West et al, 2005] 
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These backgrounds were selected in a manner similar to previous studies 

[Manolakis et al, 2001].  Once the spatial subsets were selected, statistics were 

calculated, evaluated and used in matched filter detection.   

 The next method of spatial subsetting is the RX sliding window 

technique.  Since the introduction of the original algorithm in 1990, there have 

been numerous adaptations.  For this reason, it is important to be explicit in 

the formulation of the algorithm.  The sliding window constructed for this 

experiment is depicted in Figure 3.14, showing the covariance window, mean 

window, exclusion window, and detection window.    

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Four-Part Sliding Window Implementation 

 

Quite simply, the four main variables considered in this experiment were the 

sizes of these windows.  This section will describe the factors to consider when 

selecting the sizes of these windows in order from the outside in. 
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 The RX algorithm can be implemented with the covariance window fixed 

and encompassing the full scene.  The original implementation involved a 

rapidly varying mean and a more slowly varying covariance.  The size of the 

window will impact the stability of the statistics, the MVN of the data seeding 

the covariance matrix, and the potential to include target species in 

background.  Selection of the size of the covariance will therefore depend on the 

number of bands in the data cube, the composition of the scene, and the size, 

shape, and possibility of multiple occurrences of the target.  For this experiment 

the targets were masked to eliminate dependency on the target size, shape and 

frequency.  So, results will give insight into the utility of various sized windows 

in proportion to the number of bands for scenes with a composition similar to 

the test data. 

 Another consideration of the covariance window is the relationship 

between the mean used to calculate the covariance and the mean used to mean 

subtract the test pixel.  The order of operations for these calculations has varied 

in the literature.  For this implementation, the mean of the data in the 

covariance window is used to generate the covariance, and simultaneously the 

mean of the data in the mean window is subtracted from the test pixel.  In other 

studies the covariance has been calculated after locally mean subtracting the 

data [Li et al, 2003].  As a separate step, local mean-subtraction (like 

convolution) increases the MVN of the data.  A covariance matrix calculated 

from a local window of the local mean-subtracted data set would therefore 

better adhere to the MVN assumption of the matched filter and provide better 

separation of target and background.  However, local mean subtraction will 

change the spectra of identical targets in different backgrounds, and therefore 
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spread the distribution of target returns in the detection statistic result.  

Additionally, the use of a covariance matrix in this case involves a double mean 

subtraction with two different means.  A direct comparison of these methods 

and their influence on the spread of detection result statistics is left for future 

work.  This study will examine several covariance window sizes to include the 

extremes of the singular matrix and the full scene, each calculated before or 

simultaneously along with the mean.     

 The mean window is the essence of the RX algorithm.  Subtracting the 

local mean from a pixel subtracts a realistic expected value of the pixel if target 

is not present.  In other words, the assumption of the RX algorithm is that the 

source of interference is the mixing of non target species from within the target 

pixel, and therefore the removal of that interference will unveil the target.  In 

the matched filter, removing the background expectation value from a test pixel 

containing target causes the (x-µ) term to strongly resemble the mean 

subtracted target spectrum (d-µ), thus resulting in a high matched filter score.  

So, it is easy to see that target presence in this calculation of mean would be 

extremely detrimental to the process.  While target contamination is less of an 

issue for sub pixel or point targets, it represents a significant weakness in this 

approach for fully resolved targets.  This is another factor contributing to the 

conclusion that RX is more suited to locate sub pixel rather than full pixel 

targets.  The heavy influence of target contamination necessitates the exclusion 

window, inside of which no pixels are used for statistical calculations. 

 Given the approximate physical size of the target being sought and the 

collection parameters (specifically GSD) of the scene, it is reasonable to assume 

that a user could estimate the size of the target in pixels.  Making the exclusion 
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window twice the size of the target ensures that when pixels on one edge of the 

target were being detected, pixels on the other edge will still be excluded.  For 

point targets, the exclusion window could simply be a single pixel.  Knowing the 

proper size of the exclusion window must be considered an assumption of this 

implementation because for oddly shaped or variable sized targets this level of a 

priori knowledge may not be realistic.  Another failure point of this method is 

the case of more than one target placed spatially proximal to each other.  In this 

case, instead of the statistics being self-contaminated by the target being 

detected, the statistics are cross-contaminated by neighboring targets. 

 To address both of the self- and cross-contaminated cases, a spectral 

target exclusion method was employed in conjunction with the sliding exclusion 

window.  This technique involved loosely thresholding the detection statistic 

map from the SAM algorithm to develop a binary map of possible target 

locations.  These pixels may then be excluded from the mean and covariance 

windows.  A full analysis of the effectiveness of spectral target exclusion by SAM 

pre-filtering was not part of the spatial subsetting study, but realistic runs were 

performed to verify the viability of the technique.  A more comprehensive study 

of target exclusion was performed for the spectral subsetting techniques.  

Description of the study and analysis of the concepts involved in target 

exclusion will be included in the spectral subsetting implementation section.     

 The final window size variable is that of the detection window.  The 

presence of this window served only to speed detection by operating the detector 

on more than the single central test pixel.  Given RX run times of several hours 

for the test images, the use of a nine pixel detection window made run times 

manageable.  Setting a detection window size greater than one assumes a 
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similar local background for each pixel within the window.  Because testing this 

assumption would be very difficult, the nine pixel detection window was 

generally used for screening and the single pixel detection run for final results.  

This allowed for many more iterations on other window sizes without changing 

the final reported outcome.   

 Aside from the susceptibility of the RX algorithm to target influence, 

another weakness of the technique springs from the central assumption that 

the best background for a test pixel may be derived from its immediate 

surroundings.  This assumption certainly fails for fully resolved targets.  

Consider the case of a scene containing several identical fully resolved target 

pixels in different surroundings.  Subtracting a different local mean from each 

test pixel leads to the undesirable consequence of a different matched filter 

score for the same exact target.  In addition, there are cases where the 

algorithm may fail even for subpixel targets.  While this assumption is valid for 

test pixels surrounded by relatively homogeneous regions, it fails along the 

edges, or transitions, between land cover types.  The phenomenology involved 

with targets sitting at class transitions is difficult to understand and 

characterize.  For example, it would be difficult to characterize the signal 

interfering with a sub pixel sized target resting on grass partly in the shadow of 

a prominent tree line.  This may involve estimating the mixture behavior of 

direct, downwelled, and multiple bounce photons, or some combination of the 

three depending on the collection geometry, atmospheric conditions and 

adjacency effects.  These parameters were not independently considered, and 

no modifications of the algorithm have been made to combat this problem, but 
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this deficiency in the algorithm is worthy of consideration when judging 

detection performance. 

 

3.3.2 Spectral Subsetting Implementation 

 The spectral subsetting of data for improved background characterization 

involves a number of decisions, assumptions, variables, and parameters which 

need to be understood for the successful implementation of the techniques.  

The method of classification, the method of calculating and applying the 

statistics of those classes, methods of improving class statistics, and the 

exclusion of targets are the main considerations addressed in this study.  The 

number of classes is another realistic consideration; however, the test data set 

had established classifications which guided this decision.  The methods of 

classification, improvement of statistics and target exclusion, which will be 

discussed in detail, are less important than the method of calculating and 

applying the statistics which will serve as background for the matched filter.  

Figure 3.15 depicts the generation of the individual class statistics, which are 

calculated using the data from the image cube that corresponds to the class 

assignment from the classmap.  As with the target approach method, the 

question for the analyst at this point is which class will best serve as a matched 

filter background.  The methods explored in this study automate this decision 

process.  Pre-clustering can also be combined with the RX sliding window for 

calculation of the local mean.  This leads to eight distinctive techniques which 

were implemented, each using the classmap in a different manner to 

characterize the background.  First, the means applied to the matched filter 

were calculated either by a single class or locally from surrounding pixels. 
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Figure 3.15 Pre-Clustering Class Statistics Generation 

 

This concept is illustrated by Figure 3.16, depicting a mean computed from 

pixels neighboring the test pixel (just as in the RX implementation), as well as a 

mean computed from the pixels corresponding to a given class from the 

classmap. 

 

Class Mean µkLocal Mean µℓ Class Mean µkClass Mean µkLocal Mean µℓLocal Mean µℓ  

Figure 3.16 Pre-Clustering Mean Selection Methods 
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 Next, an attempt was made to automate the decision of which class or 

classes are to be used as background based on one of three indicators.  First is 

the relationship between the target pixel and the class (target guided).  Second 

is the relationship between the test pixel and the class (pixel guided).  Third is 

the relationship between the neighbors of the test pixel and the class (neighbor 

guided).  Figure 3.17 is a depiction of the data which guides the decision of 

which class statistics to use.  The class is selected by statistical distance to the 

target, or using the classmap to identify class assignment of either the test pixel 

or the neighbors of the test pixel. 
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Figure 3.17 Pre-Clustering Class Selection Methods 

 

The information of neighboring classes can then be used to select the most 

common local class, or to create a mixture of class statistics.  Two techniques, 

taking either a class or local mean, fall into each of these four categories.  Table 

3.5 gives the abbreviated name of the eight techniques based on the two 

methods of mean calculation and the four methods of class selection. 
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Target Guided Pixel Guided
Neighbor Guided - 

Mode
Neighbor Guided - 

Mixed
Class Mean CMTG CMPG CMNG-M CMNG-X
Local Mean LMTG LMPG LMNG-M LMNG-X  

Table 3.5 Pre-Clustering Technique Names Based on Mean and Cluster Selection 

 

To denote which statistics each of these methods uses, Table 3.5 can also be 

populated with subscripted mean and covariance variables.  Table 3.6 gives this 

representation of the techniques showing the covariance calculation guided by 

the target (d), the test pixel (x), the mode of the neighbors (mode), or a mixture 

of the neighbors (mix), and the mean either calculated for the class along with 

the covariance or calculated locally (ℓ).    

 

Target Guided Pixel Guided
Neighbor Guided - 

Mode
Neighbor Guided - 

Mixed
Class Mean (µd , Σd) (µx , Σx) (µmode , Σmode) (µmix , Σmix)
Local Mean (µℓ , Σd) (µℓ , Σx) (µℓ , Σmode) (µℓ , Σmix)  

Table 3.6 Pre-Clustering Technique Variables Based on Mean and Cluster Selection 

 

The sections which describe these techniques and discuss the parameters 

required to run each algorithm are preceded by a discussion of the 

implementation of the three classification algorithms.   

 

3.3.2.1 Classification Algorithm Implementation 

 Three different types of classification algorithms were implemented to 

test pre-clustering target detection techniques.  The K-Means and SEM 

classification routines were used to generate classmaps for the test data to 
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allow for a direct comparison between algorithms.  Later, a modification to SEM 

dubbed the statistical distance classifier (SDC) was implemented as part of the 

pre-clustering experiment, which will be discussed in the next section.  Once 

the classmap for an image was generated, a simple program divided the full 

rank data cube into pools from which means and covariance matrices were 

calculated.  As discussed in the data section, part of the overall experimental 

design involved isolating each target in the scene in order to remove the 

unrealistic influence of the many spatially proximal man-made objects present.  

For consistency, this was carried through in the classification process by 

removing all targets except the one being sought from the image prior to 

classification.  This ensured that other target species in the scene would not 

influence the performance of the classification algorithm, and automatically 

removed all other targets from the class statistics.  The parameters required to 

run the algorithms were held constant for the classification of data containing 

each target.  The selection of these parameters was done with a balance of 

experimental goals and real-world application in mind. 

 The only parameter required in the K-Means algorithm was the number 

of classes (K).  The Canonic data set included classmaps that contained five and 

six classes for the Desert Radiance and Forest Radiance scenes respectively, so 

this convention was adopted.  To speed processing time for SEM, the K-Means 

classmaps were used as the algorithm starting point, and the data set was 

reduced in dimension using PCA.  The SEM convergence parameter, measuring 

the change in class means, was tightly set to avoid early convergence, and the 

class size parameter was loosely set to allow SEM to eliminate classes if they 

became too small.  Once the algorithm had run to the maximum iterations 
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allowed, a local minimum was observed in the convergence parameter and the 

associated classmap was selected as the result.  This method of running the 

algorithm prevented early convergence, and ensured the best possible classmap 

for a given number of classes.  Reinforcing the K values given in the Canonic 

data set, there was no difficulty is selecting the SEM convergence parameter 

which would result in the correct number of classes.  So, while agreement in 

number of classes was forced for the experiment, the same number of classes 

could have been independently the same.  This does not, however, mean that 

the number of classes used was ideal.  In fact, the variety of pixel types (even in 

this relatively low clutter scene) ensures that mistakes were made during 

classification.  To address this, a method which is not uncommon in statistics 

was implemented to alleviate some of this error. 

 As part of the classification process, every pixel in the image was 

assigned to a single class.  For the SEM algorithm, these classes were formed 

by the Gaussian maximum likelihood of the pixels belonging to a given class.  

As implemented, the SEM algorithm does not allow for an "other" class of 

anomalous pixels that have a very low GML probability of belonging to any 

class.  To compensate for this, the method of calculating the final class 

statistics was altered to exclude the anomalous pixels in each class.  Aside from 

introducing error into the measure of background signal used in the matched 

filer, including anomalous pixels decreased the MVN of class statistics, seeding 

the matched filter with data in greater violation of the Gaussian assumption.  

To eliminate these pixels, a technique called statistical distance exclusion (SDE) 

was implemented.  SDE calculates the class statistics, measures the statistical 

distance of each pixel in the class pool, eliminates the pixels which lay outside 
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of a given threshold, and then recalculates class statistics without those pixels.  

This can be combined with spectral target exclusion to ensure class statistics 

are not contaminated.  To illustrate these techniques, Figure 3.18 shows the 

chi-squared plot for an example class distribution taken from the Forest 

Radiance Run05 image. 

 

 

 

 

 

 

 
Figure 3.18  Chi-Squared MVN plots showing (a) the original distribution, (b) pixels 

excluded by SAM prescreening (marked x), and (c) the tail of the distribution  
reduced by statistical distance exclusion (points omitted). [West et al, 2005] 

 

Now that the implementations of classification and class statistics calculation 

have been described, the eight methods of applying these statistics to the target 

detection problem will be explained in the following sections. 

 

3.3.2.2 Class Mean Target Guided 

 This method simply used the statistics derived from a single cluster as a 

background for the matched filter.  Figure 3.19 depicts the CMTG selection of 

mean and covariance.  The central assumption of the CMTG method is that a 

single class can be selected to best represent background.  The only data 

available to make this decision (without relying on spatial information in the 

χ2
GoF = 22.7 χ2

GoF = 31.3 χ2
GoF = 31.3 

(a) (b) (c) 
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image) is the target vector.  Using this vector to drive the selection of a single 

class has a physical implication worth describing. 
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Figure 3.19 Class Mean Target Guided (CMTG) Pre-Clustering 

 

 The underlying hypothesis is that the cluster closest to the target will 

serve as the best background.  This hypothesis logically only holds true when 

the source of interference is not sub pixel mixing.  If spatial information is not 

considered in the algorithm, the results are assumed to be location invariant (so 

it doesn't matter where in the scene the target rests).  This assumption can only 

be realistic for fully resolved targets in the open (with no adjacency effects).  If 

this is the case, the interference most likely to cause false alarms will come 

from other target-like species in the scene (impersonators).  If these pixels are 

present in the most target-like class, they will be included in the background 

and suppressed.  In practice, there are two major difficulties when 

implementing a technique based on this logic.  First, the most target-like class 

will also contain the target pixels, so they must be excluded from the class.  

Second, the K-Means and SEM discrimination metrics differ from those of the 
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GLRT detector.  Therefore, the classification algorithm and detection algorithm 

do not agree on which pixels in the scene are similar to the target.   

 Spectral target exclusion can be applied to handle the cluster target 

contamination problem by eliminating possible targets from the background 

data pool.  As with the spatial subsetting experiment, the viability of the 

spectral exclusion technique was confirmed, but the Canonic truth maps were 

used for the final results to remove the influence of the differing levels of target 

exclusion among the various targets.  In an attempt to abate the problems with 

mismatched modalities between classifier and detector, a third clustering 

algorithm was used.  A single line code change from the SEM algorithm, the 

statistical distance classifier (SDC) reduced the SEM discriminant function to 

use only the statistical distance measure.  Recalling that the SEM discriminant 

was  
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 2.13  

the SDC discriminant was simply 

)()( 1
i

T
i xxDi µµ −Σ−= −  3.17  

The SEM classmaps were used as the algorithm starting point and SDC was 

restricted in the number of iterations so as to not change the number of classes 

in the scene.  By changing the discrimination metric, SDC used a measure to 

compare pixels in much the same way as the GLRT.  Ideally, the clustering and 

detection algorithms would have matching spectral discrimination metrics, but 

that was left to future work.  A real-world algorithm based on these principles 

would involve clustering the data, selecting the cluster with the smallest 

statistical distance from the target, running a spectral target exclusion routine, 
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calculating the statistics of the resulting data pool, and then running a 

matched filter over the original image.  As previously discussed, this algorithm 

would be best theoretically suited for fully resolved targets.  The next algorithm 

attempts to extend this concept to the sub pixel detection problem.   

  

3.3.2.3 Local Mean Target Guided 

 The LMTG technique uses the same method of cluster selection as the 

previous technique, but instead of a class mean this method uses the RX 

sliding window to calculate a local mean around each test pixel.  Figure 3.20 

depicts the LMTG selection of mean and covariance. 

 

Local Mean µℓ Target Guided Σd

Band 1

B
an

d 
2

Closest in Statistical Distance

Target Spectrum

Band 1

B
an

d 
2

Closest in Statistical Distance

Target Spectrum

Local Mean µℓ Target Guided Σd

Band 1

B
an

d 
2

Closest in Statistical Distance

Target Spectrum

Band 1

B
an

d 
2

Closest in Statistical Distance

Target Spectrum

Target Guided Σd

Band 1

B
an

d 
2

Closest in Statistical Distance

Target Spectrum

Band 1

B
an

d 
2

Closest in Statistical Distance

Target Spectrum

 

Figure 3.20 Local Mean Target Guided (LMTG) Pre-Clustering 

 

This can be accomplished using the traditional RX implementation, but with a 

stationary cluster covariance instead of a global covariance.  By suppressing 

target-like species with the covariance and sub pixel mixing with the local 

mean, this method provides a theoretical measure of versatility.  Like the RX 

algorithm, however, this technique requires an accurate estimate of target size 
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in order to employ spatial target exclusion and avoid self-contamination and 

assumes that other targets situated proximal to the test pixel have been 

suppressed by spectral target exclusion to avoid cross-contamination.  These 

exclusion techniques again are critical due to the small sample size of the mean 

window around the test pixel. 

 

3.3.2.4 Pixel Guided Selection Techniques 

 Two of the techniques examined use the test pixel to decide which cluster 

statistics to use in the matched filter.  The class mean pixel guided (CMPG) 

technique operates on the test pixel using the mean and covariance of the class 

to which the test pixel is assigned.  The local mean pixel guided (LMPG) 

technique uses a covariance based on test pixel class assignment, but a mean 

from a local window of pixels.  Figures 3.21 and 3.22 depict the CMPG and 

LMPG techniques respectively.  The same assumption about suppressing the 

interference from mixing versus suppressing target impersonators applies to 

these methods.  This technique assumes that the class that best represents the 

background is the class to which the test pixel belongs.  This assumption holds 

for the anomaly detection problems explored in [Ashton, 1998].  For the target 

detection problem, this may be the case for test pixels containing target if the 

classification and detection algorithms have a similar discriminant function.  

However, using the class covariance for a non-target test pixel may not be the 

optimal method for false alarm suppression.  
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Class Mean µx Pixel Guided ΣxClass Mean µxClass Mean µx Pixel Guided ΣxPixel Guided Σx  

Figure 3.21 Class Mean Pixel Guided (CMPG) Pre-Clustering 

Local Mean µℓ Pixel Guided ΣxLocal Mean µℓ Pixel Guided ΣxPixel Guided Σx  

Figure 3.22 Local Mean Pixel Guided (LMPG) Pre-Clustering 

 

3.3.2.5 Neighbor Guided – Mode Selection Techniques   

 The neighbor guided – mode selection techniques poll neighboring pixels 

to identify which classes are proximal to the test pixel.  These techniques use 

the statistical mode class to derive the matched filter background.  In the class 

mean neighbor guided – mode (CMNG-M) method, the most common class 

assignment among the pixels in the local window is used to select which class 

mean and covariance to use in the GLRT detector.  Similarly, the local mean 
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neighbor guided – mode (LMNG-M) method, uses the mode to select a class 

covariance, but uses the mean of the local window to operate on the test pixel.  

Figures 3.23 and 3.24 respectively depict the CMNG-M and LMNG-M selection 

of mean and covariance. 
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Figure 3.23 Class Mean Neighbor Guided - Mode (CMNG-M) Pre-Clustering 
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Figure 3.24 Local Mean Neighbor Guided - Mode (LMNG-M) Pre-Clustering 

 

Assuming that the pixels most abundant in the surroundings of the test pixel 

would dominate the statistics, these methods substitute the well-formed 
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statistics from pre-clustering for the more variable statistics of a sliding 

covariance window.  So, similar to the traditional implementation of RX, this 

method assumes that the best background statistics can be derived from the 

immediate surroundings of the test pixel.  However, using the mode class of the 

local window inherently discards information gained by polling the test pixel 

surroundings.  The presence of other classes in the local window may have an 

impact on detection, especially along class transitions.  The next methods seek 

to remedy this theoretical downfall by incorporating all of the information 

gained in polling the neighboring pixels.  

  

3.3.2.6 Neighbor Guided – Mixed Statistics Techniques 

 The next two methods diverge from the paradigm of selecting a single 

class to provide statistics for the matched filter background.  The class mean 

neighbor guided – mixed (CMNG-X) technique, first called the Adaptive RX 

algorithm, was developed early in the research and uses the mean and 

covariance of each class in mixtures based on the surroundings of the test 

pixel.  Like the traditional RX, the algorithm assumes that the best background 

can be described by the neighbors of a test pixel.  In an attempt to capture only 

the immediate surroundings of the test pixel while avoid the issues of 

underdetermined statistics, CMNG-X polls the classmap to figure out which 

classes are present around the test pixel and uses the well formed statistics of 

those classes as a matched filter background.  This was inspired by techniques 

in adaptive covariance estimation, where covariance mixtures were used to 

overcome small sample sizes.  Figure 3.25 depicts the CMNG-X selection of 

mean and covariance. 
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Figure 3.25 Class Mean Neighbor Guided - Mixed (CMNG-X) Pre-Clustering 

 

Instead of selecting a single class from the results of the polling, the matched 

filter statistics are derived from the class statistics through a simple linear 

mixture by the equations 

∑
=

Σ=Σ
k

i
ii

1
α                        ∑

=

=
k

i
ii

1
µαµ  3.18 

 

where i is the class number and i is the fraction of the class present in the 

torus.  Establishing the mathematical validity for linear mixtures of covariance 

is important because the mixture fraction is often squared in the literature.  

Both methods are appropriate under certain conditions, but the distinction is 

between mixing distributions within a pixel and mixing pixels from separate 

distributions.  The linear mixing model provides the basis for a case of several 

endmembers present in a single pixel.  For a two class example, a mixed pixel 

containing target and background can be expressed 
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nBdx +−+= )1( αα                         3.19 

where  is a the abundance of the target, d, the background is B, and n is the 

noise term.  Assuming the noise is negligible and the data are mean centered, 

the covariance matrix for a set of mixed pixels would be   

)})1(())1({( BdBdE T αααα −+−+=Σ                         3.20 

resulting in a squared  term.  If, however, we have the covariance of several 

classes in the image, calculated from several pixel pools, combining these can 

be done by linear mixtures.  For a two class example, given the covariance 

matrix of each class,  

}{ 111 xxE T=Σ   and  }{ 222 xxE T=Σ                      3.21 

and given the ratio of the number of pixels from each class included in the data 

pool, , the combined covariance of the two pools can be approximate by   

}{)1(}{ˆ
221112 xxExxE TT αα −+=Σ                      3.22 

which is essentially the same expression as equation 2.42 introduced in the 

adaptive covariance estimation section.  Class means are pooled using the same 

expressions and mixture coefficients and applied in the GLRT expression.     

 Covariance estimation is necessary because of the instability of second 

order statistics from small data pools.  The fact that class means do not suffer 

from the same difficulties with limited sample sizes leads to the local mean 

neighbor guided – mixed (LMNG-X) method uses the mean of pixels in a local 

window along with a mixture of covariance matrices.  Using information from 

the neighboring pixels to mix statistics is unique from the literature.  Figure 

3.26 depicts the LMNG-X selection of mean and covariance. 
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Figure 3.26 Local Mean Neighbor Guided Mixed (LMNG-X) Pre-Clustering 

Both of the neighbor guided – mixed techniques incorporate all of the 

information obtained by identifying the classes present in the test pixel 

surroundings.  This gives the mixed techniques a theoretical advantage in 

detecting targets that lay along land cover transitions, or are impacted by 

adjacency effects. 

 

3.3.3 Spectral Subsetting Target Exclusion 

 Each of the eight methods of selecting mean and covariance for the 

matched filter make different assumptions about the target and background 

space.  While it is true that each is able to employ spatial and spectral target 

exclusion methods and may be vulnerable to target contamination to a different 

extent, by perfectly excluding target and holding the contamination 

vulnerability variable constant the underlying assumptions of the algorithms 

may be tested.  Perfect exclusion was employed for the main comparison 

experiment, but examination of the viability of target exclusion methods was 

also examined as a guide for the practical application of these methods. 
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 To visualize the pre-filtering exclusion problem, Figure 3.27 shows an 

illustration of overlapping background and target distributions.  Narrowing and 

separating these distributions is the ultimate goal of the detection problem.  If 

the distributions were separable by pre-filtering alone, the problem would be 

solved and the target would be considered extremely high contrast.  As shown 

in the target selection section, none of the test targets were found without false 

alarms using SAM alone.  Spectral target exclusion involves choosing a 

threshold along the x-axis in Figure 3.27, and excluding all pixels above that 

threshold.   
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Figure 3.27 Example of Overlapping Background and Target Distributions 

 

In the figure, the numeric labels denote the thresholds used in the experiment.  

The four cases include: (1) excluding no targets from the scene, (2) excluding 

half of the targets (detection rate of 0.5), (3) excluding all possible targets and as 

much background as needed (detection rate of 1.0), and (4) perfect exclusion 
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using the truth map to exclude only target and no background in the shaded 

region.  Obviously, in a real-world application, detection rates cannot be used to 

set a pre-filtering threshold.  This experiment can, however, inform a user 

performing real-world detection as to the appropriate level of exclusion for a 

given problem.  In practice, the level of exclusion depends on the purpose of 

detection (i.e. image screening, which accepts some false alarms for an overall 

higher detection rate, or automated target detection, which requires a low false 

alarm rate for some of the pixels on target).  The overlap of the distributions is 

the critical factor in performing this type of exclusion, so the appropriate level of 

exclusion will vary for different targets and pre-screening techniques.  Similar 

to the concept that was applied in matching the classification and detection 

discriminant functions for the target guided methods, another technique 

explored in this study was the use of target contaminated results to pre-filter 

detection.  Auto exclusion is the process of iterating with a given technique by 

running detection without excluding targets, then thresholding those results to 

develop an exclusion map, and then running detection using that map.  

Comparing auto exclusion to SAM exclusion for various levels of contamination 

will demonstrate how different levels of distribution overlap (and different pixels 

overlapping) will impact pre-filtered detection. 

 Again, for the central part of this experiment, in order to remove the 

dependency on the ability of pre-filtering to detect a given target, the fourth 

method was employed.  This detracts from the realism of the results, but adds 

to the consistency of measurement for comparison.  The implementation of the 

methods for evaluating results in order to expose the strengths and weaknesses 

of all of the algorithms studied will be discussed in the next section.  
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3.4 Evaluation Metric Implementation 

 Two evaluation techniques were implemented to examine the various 

methods of background characterization described above.  To scrutinize the 

data pool from which a given background was calculated, the Chi-Squared test 

for MVN was implemented without deviation from the method outlined in the 

literature.  The rank ordered statistical (or Mahalanobis) distance of each pixel 

in the distribution was plotted against the expected value from the chi-squared 

distribution, and the goodness of fit was measured via equation 2.32.   

 To implement the formation of a ROC curve, a few simple modifications 

were made to tailor detection results for the experiment. As mentioned in the 

background section, the axes of the ROC curve plot were changed to detection 

rate versus false alarm rate.  Points on the ROC curve were generated by 

counting the number of false alarms at each occurrence of a target pixel detect 

and dividing by the total number of background pixels.  Due to the limited 

number of target pixels for certain targets, reporting a probability of detect and 

false alarm would be an over-generalization of the results.   

 In keeping with the rest of the experiment, all targets except the one 

being sought were discarded for ROC curve formation.  This was a simple 

implementation given the numbering scheme of the truth maps (given in Table 

3.1).  Pixels on other targets were labeled as guard pixels in the truth maps, 

and thus automatically excluded from the ROC curve calculations.  Again, this 

allowed for an isolation of each target in a natural background, and eliminated 

spatial dependencies in some of the results, but also eliminated the possibility 
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of studying the target discrimination power of background characterization 

techniques.   

 Like the goodness of fit metric in the Chi-Squared MVN test, the average 

false alarm rate (AFAR) metric was used to reduce a curve to a single number.  

AFAR is an approximation of the area above the ROC curve and was calculated 

by averaging all of the values along the x-axis of the curve.  The ability of AFAR 

to provide a comparison between algorithms is linked to the type of false alarms 

occurring in the ROC curve.  To illustrate this, Figure 3.28 shows ROC curves 

for two different algorithms detecting the same target.   
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Figure 3.28 Example ROC Curve Illustrating the Need for a Partial AFAR 

 

The AFAR for algorithm A is an order of magnitude less than for algorithm B, 

yet the ROC curve demonstrates that algorithm B is preferable for operation at 

false alarm rates lower than 1.E-03.  The last few target pixels were more 
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difficult for algorithm B, driving up the final AFAR value in spite of good 

performance at low false alarm rates.  A partial AFAR, averaging false alarms 

only to a certain rate of detection, could be calculated to show better 

performance for algorithm B.  In this case, selection between AFAR and partial 

AFAR would reverse the decision of which detector is best.  Not unlike the 

decisions surrounding the level of target exclusion, evaluation of a detection 

result with partial AFAR requires a fundamental decision about the type of 

application in which the detector will be employed.  Algorithm A would be 

preferable for applications where some target pixels needed to be identified with 

the fewest possible false alarms.  As an example, an automated target detection 

system might require low false alarm rate operation with a tolerance for not 

locating every pixel on a given target.  Likewise, algorithm B would be preferable 

for applications where some false alarms are acceptable but false negatives (i.e. 

missed targets) are not.  An application allowing for a high false alarm rate 

might be searching through large data sets to flag potential targets for further 

scrutiny by an analyst.  Selecting the latter application, and for consistency in 

results, the full AFAR was calculated for each detection result in this 

experiment.  Another practical reason for using the full AFAR metric was that 

the majority of high contrast target pixels were detected without false alarms 

using any of the methods.  In order to compare the methods, the most difficult 

pixels on these relatively easy targets needed to be included.  The use of a 

partial AFAR would have changed the relative ranking of algorithms in detecting 

some of the low contrast targets, but would have had minimal impact on the 

observed trends overall. 
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 The full AFAR included the false alarms detected in locating every pixel 

on a given target in the image.  To compare the performance of several 

background characterization techniques in finding sub pixel and fully resolved 

targets, a separate ROC curve and AFAR metric were calculated for the 

detection of only those pixels identified in the truth maps as sub or full pixel 

targets.  Full pixels targets were generally easier to find than other types, and 

sub pixels were generally more difficult.  The AFAR result for the all pixels 

category incorporated false alarms from the detection of all types of target pixels 

and therefore was always the greatest value.  In cases where the target 

contained glare or shadow pixels, the full and sub AFAR results did not 

combine to form the all pixels result.  Included in Appendix A are ROC curves 

for the all pixels case along with AFAR results for the all, full, and sub pixel 

targets on one plot.  While inspection of the ROC curve remains the most 

informative evaluation method, a complete picture of detection performance can 

be summarized with these three AFAR results.  For this reason, only the 

summary AFAR charts are given in the results section. 

 

3.5 Experimental Approach Summary 

 The goal of this experiment was to quantify the relative performance of 

several methods of stochastic background characterization.  Given the wide 

variety of methods collected from the literature, the methods have been 

organized into two groups: those that rely on spatial information within the 

scene to select a background, and those that rely on spectral information in the 

cube to select a background.  Two methods of spatial subsetting were 

implemented, allowing for the selection of a target approach region to serve as 
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the background data, or the selection of RX sliding window sizes to surround 

the test pixel and calculate a background from the local window.   The eight 

methods of spectral subsetting implemented allow for the use of a class or local 

mean, and selection of a method for guiding the decision of which class 

statistics to use.  The target guided method uses the target spectrum to select 

the class closest in statistical distance from the target.  This method requires a 

better match between classification and detection discriminant functions, 

necessitating the use of the statistical distance classifier.  The pixel guided 

method uses the class identity of the test pixel to select which statistics to use.  

The neighbor guided method polls pixels around the test pixel and uses those 

class identities either to select the statistics of the most common class, or to 

mix statistics based on the ratios of classes present.   

 The ways in which each of these methods handles multivariate 

normality, target exclusion, and detection of low contrast targets are other 

factors considered in this study.  The chi-squared test for MVN was 

implemented, and techniques in spatial and spectral target exclusion were 

explored to provide insight into the influence of target contamination on 

backgrounds from different characterization techniques.  Finally, a low contrast 

method of mean subtraction was implemented to test detection of low contrast 

targets.  To summarize the techniques used to this point, the thesis block 

diagram given in Figure 3.29 depicts all of the steps in the target detection 

chain.  Figure 3.30 shows the categories of background characterization 

techniques considered in the study.  Each box below the dotted line in Figure 

3.29 represents a set of techniques which have been tested and compared 

during the course of this research. 
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 With all of the implementation of the experiment covered, the next 

section will present and discuss the results of the experiment for each 

technique.  Examples of multivariate normality, target influence, and low 

contrast detection will be presented along with the results to give the context for 

each of these considerations.  Finally, all of the results will be compared to 

provide insight into the relative performance of the background characterization 

techniques. 
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3.6 Thesis Block Diagram 
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Figure 3.29 Target Detection Data Flow Chart 
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Figure 3.30 Background Characterization Data Flow Chart 
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4.0 Results and Discussion 
 

 Having an understanding of background characterization techniques in 

the current literature and given the issues, trade spaces, and considerations 

involved with implementing current and new algorithms, a series of experiments 

were conducted to test different background characterization techniques.  

Several techniques within the categories of spatial and spectral subsetting were 

tested for performance under ideal target exclusion conditions.  The 

multivariate normality of the background data in each of these techniques was 

measured.  The influence of target contamination was tested for each type of 

technique in order to inform the process of real-world detection.  Finally, a few 

brief experiments demonstrated how statistical distance exclusion and low 

contrast detection (mean subtraction of the test pixel and not the target 

spectrum) are good subjects for future research. 

 The background characterization technique comparison portion of the 

experiment considered eighteen different backgrounds for eight different targets 

in each of two scenes.  In an attempt to make the results concise, the eight 

targets were divided into two groups based on their relative difficulty of 

detection.  Low contrast targets were those with an AFAR of greater than 1E-3 

and high contrast targets were those with an AFAR of less than 1E-3.  For both 

of the scenes, one target proved to be exceedingly low contrast and one target 

was very high contrast.  To eliminate the influence of the inconsistent results 

from these targets, they were excluded from the low and high contrast averages. 

 To allow for comparison of performance in detecting full and sub pixel 

targets, the AFAR graphs provide the AFAR of all, full, and sub pixels on the 
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target.  These did not combine to form the all pixels results in every case 

because, from the construction of the truth maps, the "all pixels" category may 

have included shadow or glare target pixels depending on the target.  In order to 

provide greater separation of the results, logarithmic scaling was used on the 

axis measuring false alarms.  This stretched the x-axis and flattened ROC 

curves to aid in examination.  The logarithmic scale also helped to separate 

AFAR bars, but it necessitated inversion of the graph, so it should be noted that 

higher is better for bars on the AFAR graphs.  The results for all of the targets, 

including ROC curves and AFAR graphs are given on a target-by-target basis in 

Appendix A, grouped by characterization technique.  The individual results of 

the extensive testing of pre-clustering target influence and MVN are also given 

in Appendix A.  Many of the IDL coded implementations of the techniques used 

in this study are included in Appendix B for reference. 

 After considering detection results, MVN, and target influence for each of 

the background characterization techniques separately, the last section 

provides an overall comparison across methods in spatial and spectral 

subsetting.  With all of these results, the discussion will point out adherence 

and deviation from the expected behavior and provide insight into the 

phenomenology driving some of the results.  This comparative evaluation will 

lead to some conclusions about the practical application of these background 

characterization techniques. 
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4.1 Spatial Subsetting Results 

 

 Spatial subsetting was divided into two categories: the target approach 

method and the RX sliding window.  Results of detection using scene-wide 

statistics are included with the former.  ROC curves and AFAR graphs for each 

target individually are included in Appendix A.   

   

4.1.1 Target Approach Method Detection Results 

 Results of detection with the target approach regions and the scene-wide 

statistics are shown in Figures 4.1 and 4.2 for the Forest and Desert Radiance 

images respectively.  The first observation to note was that none of the target 

approach regions consistently outperformed the scene-wide statistics in the 

forest scene.  This was not surprising considering the forest scene was relatively 

low in clutter content, especially after exclusion of the other targets in the scene 

to isolate the target being sought.  In earlier stages of this research, it was 

noted that scene-wide statistics including all other targets did not provide this 

level of detection.  The next observation was that the mixed background 

performed well for the high contrast forest scene targets and exceptionally well 

for all of the targets in the desert scene.  This indicated that the species in the 

broader image were well suited to serve as background, but there was a 

detrimental impact of including all pixels in the background statistics.  This 

was much more the case for the desert image than for the forest image.  The 

underlying basis of this disparity, which will become clearer after examining the 

MVN of the data sets, caused this type of result to recur throughout the 

techniques studied. 
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Figure 4.1 Run05 Target Approach Summary AFAR Plots 
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Figure 4.2 Run03 Target Approach Summary AFAR Plots 
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 Given these results, the a priori selection of an appropriate target 

approach region to serve as background for a target not in the study set would 

be difficult.  The measure of statistical distance between the target and each of 

the backgrounds cannot be used to guide selection of the best background.  In 

line with statistical intuition, the full scene and mixed region backgrounds were 

respectively closest and second closest to each target.  This was the case even 

when other backgrounds such as road or grass provided the best detection 

results.  While the mixed region and scene-wide statistics served as the most 

consistent backgrounds overall (with the lowest averaged AFAR for full and sub 

pixel targets) the individual results in Appendix A reveal that each background 

in this section of the experiment -- with the exception of the forest scene trees 

region -- served as the best background for all of the pixels on at least one 

target.  That being said, these results may have been influenced by the 

presence of shadow and glare pixels in the all pixels category.  For full and sub 

pixel targets, either the mixed region or the scene-wide background provided 

the lowest AFAR for every target in the study.  For reasons that will be 

explained later in this section and in the interest of avoiding simply ruling out 

the trees region in the forest scene as a viable background, the scene-wide 

statistics in the forest scene and the mixed region in the desert scene were 

identified as the best backgrounds for this technique.  This decision could have 

been guided by a priori information about the image, but not by a measure of 

statistical distance (or any other target to background measurement).  The next 

sections will discuss the rationale for this decision, as well as some of the 

factors to consider when applying the target approach method. 
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4.1.2  Target Approach Method MVN Test 

 The chi-squared test for multivariate normality was applied to each of the 

backgrounds, along with a goodness of fit test to measure the total normalized 

deviation from the expected line.  Figure 4.3 shows the GoF for the target 

approach regions and scene-wide data for the forest and desert images.  In both 

cases, regions of vegetation were the most multivariate normal, the mixed 

regions were relatively less multivariate normal, and the scene-wide data were 

decidedly non-multivariate normal.  One significant observation was that the 

desert scene had a scene-wide GoF two orders of magnitude greater (worse) 

than the forest scene, while the target approach subsets had comparable 

measures of MVN.  This was the most likely cause for the failure of the desert 

scene-wide statistics as a matched filter background.  The cause of this poor 

MVN measure was the presence of sensor noise in the data.  This level of noise, 

which was not present in the forest scene, exceeded the MVN sensitivity of the 

matched filter.   

 Referencing the detection results, the mixed background was a very 

strong performer in the desert scene, and yet it was not the most normal of the 

target approach regions.  Combining this with the fact that the mixed and full 

scene data contained roughly the same species, it is clear that any background 

must be within a certain MVN threshold in order to avoid confounding the 

matched filter results.  This observation relates to the selection of the best 

region for the realistic application of this method.  Using an MVN test, it would 

have been possible to determine the normality of the full scene and then select 

a mixed subset, if the MVN metric exceeded a certain threshold.  A third option  
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Figure 4.3 Run05 and Run03 Target Approach MVN Test 
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might be to employ statistical distance exclusion to improve the MVN of the 

data to meet the threshold. 

 The target approach method inherently assumed the absence of target 

species due to user knowledge of the scene.  If this level of information was not 

available, or if the full image was used as a background, the presence of target 

species in the background would influence the result.  The next section looks at 

how targets might influence the statistics of target approach regions. 

 

4.1.3 Target Approach Method Target Influence 

 With truth maps available for the test data sets, the target approach 

regions were selected with absolute confidence that no target species existed in 

the background.  This level of information may or may not be available in a 

real-world application of the method.  To study the impact of target presence in 

a hand-picked region, target pixels from a target elsewhere in the scene were 

added one at a time to the grass target approach region.  The statistics of the 

18,000 pixel region were calculated with each addition and detection was 

performed on the image.  So few samples in such a large data pool may not 

seem statistically significant and there may in fact be little change to the mean 

of the background due to target contamination.  However, the matched filter's 

use of the covariance to suppress the band-to-band variation of the background 

makes the changes in the shape of the covariance matrix a more important 

factor.  To get a sense for the shape of the covariance with the addition of each 

target pixel, the covariance matrices were decomposed with eigenvalue 

decomposition.  After rank ordering the eigenvectors by their respective 

eigenvalues and therefore ordering them by statistical significance, the spectral 
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angle between corresponding eigenvectors for each covariance was measured.  

As the shape of the covariance matrix changed, the spectral angle for 

corresponding eigenvectors increased.  Figure 4.4 shows the results for four 

targets in the forest scene.  Note that for the addition of each successive target 

pixel, the shape of the covariance changed in the same direction to a greater 

extent. 
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Figure 4.4 Target Influence Eigenvector Spectral Angle Comparison 

 

 Knowing that the covariance changed, the extent to which these changes 

impacted detection were observed by looking at the matched filter returns on 

the target and background.  Figure 4.5 shows the maximum and minimum 

return from all pixels on the target for each of four targets along with the 

maximum and minimum background return.  The maximum target return was 
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the first detect and the maximum background return was the first false alarm.  

These plots represent the extrema of the target and background distributions in 

the detection statistic map.  The maximum return on the target was always 

closer to (and for F4 even crossed) the maximum background return; the figure 

demonstrates that the addition of target pixels to the background affects greater 

overlap of the distributions. 
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Figure 4.5 Target Influence Eigenvector Spectral Angle Comparison 

 

In the target approach region method, the possibility of target contamination 

can be negated by some knowledge of general target location.  However, 

matching the source of the interference causing false alarms (namely sub pixel 

mixing or target-like species) is left to the judgment of the analyst.  The next 

section will provide the results of the RX sliding window, a technique which 
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automates this process by making a few assumptions about the data and 

attempts to match the interference while providing greater multivariate 

normality and excluding target pixels from the background. 

 

4.1.4 RX Sliding Window Detection Results 

 The variables in the RX sliding window experiment were the sizes of the 

four windows in Figure 3.13.  The detection window was held at a single pixel in 

order to generate a unique background for each pixel in the scene.  The 

exclusion window was set to twice the size of the target, assuming that a similar 

approximation could be made about the target in real-world applications.  The 

size of the mean window was fixed at two pixels larger than the exclusion 

window to allow for a rapidly varying mean.  These decisions allowed for a focus 

on various sizes of the covariance window.   

 Figures 4.6 and 4.7 show the averaged AFAR results for high and low 

contrast targets in the forest and desert scene respectively.  The covariance 

window sizes were selected to be roughly one, five, and ten times the number of 

bands, as well as a stationary scene-wide window.  Given the different sizes of 

the targets and the geometry of concentric square windows, the actual number 

of pixels in the background varied slightly among the targets.  After running the 

150 pixel case (one times the number of bands), it was noted that several of the 

targets experienced singularity due to the spectral exclusion of samples in the 

already data-starved window.  Results for each of the individual targets, which 

are included in Appendix A, as well as the averaged results in the figures, are 

marked with an asterisk to denote the use of singular matrices where 

applicable.  Ideal exclusion was used to remove the influence of targets on the  
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Figure 4.6 Run05 RX Sliding Window Summary AFAR Plots 
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Figure 4.7 Run03 RX Sliding Window Summary AFAR Plots 

 



 116

technique, but in these cases the exclusion caused increased instability in the 

covariance.  As an additional source of disparity, this singularity triggered 

inversion by the Moore-Penrose pseudo inverse in the algorithm.  While the 

pseudo-inversion technique was shown to provide the least error for singular 

matrices, the different inversion techniques resulted in very different returns for 

pixels within the same image.  The 200 pixel case was run to replace the 150 

pixel case and put this window size on equal footing with the other window 

sizes.  From the averaged results, one observation is the dramatic impact of 

singularity on the 150 pixel backgrounds.  The comparable performance of the 

low contrast forest scene targets, which did not experience singular 

backgrounds, indicated that it was singularity and not window size which 

caused the poor results.  This can be seen on a target-by-target basis in the 

results in Appendix A.   

 Across all of the results, it was clear that the 1500 pixel backgrounds 

perform well, especially in the desert scene.  For this technique, the 1500 pixel 

background was chosen as the representative top performer.  The results of 

detection with 1500 pixel backgrounds reinforce the rule of thumb saying ten 

times the number of bands is required to generate stable statistics.  There does, 

however, seem to be a weak trend toward improved performance using smaller 

window sizes for the low contrast targets and the "all pixels" category, especially 

in the forest scene.  There is likely a relationship between the noise quality of 

the data and the extent to which the lower limits of sample size can be 

approached.  For smaller window sizes, false alarms may occur where test 

pixels are proximal to noise pixels.  Just as the background data may be 
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starved by spectral exclusion, smaller windows sizes make the statistics more 

vulnerable to outliers like noise pixels. 

 Image noise is just another factor which adds to the trade-space for the 

window size decision.  Along with the noise, and the desire to capture the local 

variability surrounding the test pixel, the multivariate normality of different 

sized backgrounds and the influence of target contamination are other factors 

to consider.  The next sections will give examples of these and discuss how they 

might influence the window size decision.  

 

4.1.5 RX Sliding Window MVN Test 

 To test the multivariate normality of the backgrounds for each target, 

data from the various sized covariance windows for the central target pixel on 

each target were measured with the chi-squared MVN test and goodness-of-fit 

metric.  The results for each target individually are given in Appendix A, and the 

average GoF value from these is given in Figure 4.8, where the asterisk denotes 

a GoF with singular backgrounds  Comparing these results to the detection 

results from Figures 4.6 and 4.7, the effect that extreme non multivariate 

normal backgrounds have on detection is clear.  There is, however, no 

correlation between MVN and detection results for the relatively normal 

background sizes.  This reinforced the notion that once a certain MVN 

threshold has been reached, small improvements between relatively normal 

backgrounds will be overshadowed by other phenomenology.  For instance, note 

that the smaller backgrounds are more normal in the desert scene than in the 

forest scene.  Disparate class means and noise in the desert image has driven  
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Figure 4.8 RX Sliding Window Chi-Squared GoF 
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up the scene-wide GoF, even though local variability is more normally 

distributed. 

 An additional observation was that for both scenes, the most normal 

backgrounds contained fewer samples than ten times the number of bands.  

This indicated that the minimization of skew mentioned in implementations of 

RX in the literature would not provide optimal detection.  Once the background 

window was normal enough, other contributing factors played a larger role in 

determining detection success.  Image noise was obviously one such factor.  

Target contamination is another important factor which is discussed in the next 

section. 

 

4.1.6 RX Sliding Window Target Influence 

 Testing the influence of target contamination on detection using a sliding 

window involved controlling a number of variables.  One controlled method of 

measuring target contamination is the implanting of target pixels into the 

background, but this was already accomplished in the target approach region 

contamination demonstration.  In order to demonstrate a more realistic case, a 

target was selected from the scene which consisted of three spatially separated 

regions of target pixels located in close proximity. 

 Five different cases were run to demonstrate the utility in the spatial and 

spectral exclusion techniques used in this implementation of RX.  First, 

correctly selected window sizes were used to produce a well formed background.  

Next, a self-contaminated case was run with the exclusion window set too 

small.  Then, a cross-contaminated case was run with the covariance window 
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set too large.  Finally, the self- and cross-contaminated cases were run with 

spectral exclusion.  A visual representation of these cases is given in Figure 4.9. 

 

Well Formed Cross-ContaminatedSelf-ContaminatedWell Formed Cross-ContaminatedSelf-Contaminated
 

Figure 4.9 RX Well Formed, Self- and Cross-Contaminated Window Sizes 

 

The spectral exclusion used SAM, thresholded to eliminate all of the target 

pixels in the scene and marked SAMX3 per the convention established in 

section 3.3.3.  As previously shown, the number of samples in the background 

can have a large impact on detection; so, an attempt was made to hold sample 

size fixed.  Due to the geometry of the scene, the well formed background 

contained 728 pixels, the self- and cross-contaminated cases contained 936 

and 984 pixels respectively, and the spectral exclusion cases had backgrounds 

of fewer pixels to a varying degree depending on window location.  The results of 

these cases, given in Figure 4.10, show the detrimental impact of contamination 

and the effectiveness of spectral exclusion in a realistic detection scenario.  

There were no exclusion regions in the image that caused singularity in this 

case, but that is another factor to consider when performing spectral exclusion. 

 There are many factors influencing the window size decision for this 

technique of background characterization.  The window needs to be small  
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Figure 4.10 RX Sliding Window Target Influence Example 
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enough to capture the immediate surroundings of the test pixel, but large 

enough to provide stable statistics.  Given certain information, like GSD and 

image noise characteristics, the window sizes can be adjusted to avoid self-

contamination or to lessen the influence of noise pixels.  Information about the 

number and proximity of targets in the scene would guide the use of spectral 

exclusion.  For instance, if the analyst was certain there was only one target in 

the scene, spectral exclusion would not be used in order to avoid possible 

problems with singularity.  If more than one target may be present, or if the 

exact size of the target is not known, the selection of window sizes is further 

complicated.  Smaller exclusion windows risk self-contamination, but larger 

exclusion windows discard the valuable data spatially closest to the target.  The 

probability of including neighboring targets increases with larger covariance 

window sizes, but the influence those target pixels may have on the background 

statistics decreases as window size increases.  However, it is clear from this 

experiment that spectral exclusion can help ease these restrictions on the size 

of the exclusion and covariance windows. 

 To further explore the potential benefits of drawing spectral distinctions 

between pixels in the background, the next section will discuss the results of 

the collection of methods using spectral subsetting to improve background 

characterization for the matched filter. 

 

4.2 Spectral Subsetting Results 

 The spectral subsetting of data to improve detection involves the 

selection of a classification technique, the number of classes, methods to 

improve class statistics and exclude targets, and most importantly, the manner 
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in which the class statistics will be used.  In this section, the results of 

classification are discussed along with detection results using individual classes 

from the K-Means and SEM algorithms as backgrounds.  The multivariate 

normality of the classes determined by each classification method are provided 

for comparison.  The main results of the pre-clustering study are the results of 

detection using the eight different methods outlined in section 3.3.  The results 

of an experiment testing several methods of spectral target exclusion are shown 

and results of statistical distance exclusion and low contrast target detection 

are provided and discussed.   

 

4.2.1 Classification Results 

 The results of K-Means, SEM, and the statistical distance classification 

(SDC) modification of SEM are depicted in Figures 4.11 and 4.12 for the forest 

and desert scene respectively.  As previously mentioned, the number of classes 

in each scene was driven by the Canonic data set.  The structure within the K-

Means and SEM results are very similar for both scenes.  One difference 

between the two is that K-Means is more spatially cluttered, while SEM 

provides more homogeneous regions.  SEM was more susceptible to sensor 

artifacts, as seen by the strait lines of pixels in the light green and white classes 

in Figures 4.11 (b) and 4.12 (b). 

 Class assignments were labeled according to the apparent relation to 

ground cover.  For the forest scene, the bright and dark green classes are 

labeled light and dark trees, the light and dark blue-green classes are light and 

dark grass, and the brown class is road.  The K-Means and SEM results contain 

a bright soil class in white and the SDC contains a shadow class in black.  For 
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the desert scene, the red class is labeled road, the green represents scrub 

brush, and the white, yellow, and brown represent light, medium, and dark 

sand.  For these example images, all of the targets are masked out in black (or 

white for the forest scene SDC result).  For the images in the experiment, 

classification was run with a given set of target pixels included in order to 

simulate a natural scene containing only one target.   

 

 
(a) 

 
(b) 

 
(c) 
 
 

Figure 4.11 Run05 Classmaps Generated by (a) K-Means, (b) SEM and (c) SDC 
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(a) 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 

(c) 
 
 

Figure 4.12 Run03 Classmaps Generated by (a) K-Means, (b) SEM and (c) SDC 
 
 
 
 The results of SDC differ significantly from the other algorithms, 

especially for the desert scene.  SDC showed a preference for some classes over 

others in both scenes, and combined several classes in the desert scene.  In the 

forest scene, SDC created a shadow class and combined the bright soil class 
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with the light grass class.  For the desert scene, SEM combined the road and 

light sand classes and created a bright artifact class, and then SDC combined 

the road, light sand, and medium sand classes and created a bright and dark 

artifact class.  The purpose of the SDC technique was to enable prediction of 

the best background class by using a similar classification discriminant 

function.  The drawback of losing a good overall classification result is negated 

by the fact that all classes except the closest were discarded.  This established 

the limited utility of the SDC technique, which can obviously only be used in 

the target guided methods. 

 In order to narrow the scope of the examination by eliminating one 

classification method, the next section provides a comparison between the K-

Means and SEM algorithms for pre-clustering, including detection results and a 

multivariate normality test performed using all of the classmaps from the study. 

 

4.2.2 K-Means versus SEM and Pre-Clustering MVN Comparison 

 To avoid running the entire experiment with both the K-Means and SEM 

algorithms, a simple method of comparing the potential performance of these 

algorithms in generating good matched filter backgrounds was performed 

through examination of detection results using each class independently as a 

background.  Targets VF1 and V1 were selected as the respective example 

targets for the forest and desert scenes.  Figures 4.13 and 4.14 give the ROC 

and AFAR results for detection of these targets using backgrounds from K-

Means and SEM classification.  The results are only slightly in favor of SEM, 

with two wins, one loss, and three apparent ties in the forest scene, and three 

wins and two losses in the desert scene.  Poor performance of a single class 
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would be a detriment to the target guided method.  However, the fact that the 

target guided method uses SDC -- not SEM or K-Means -- allays concern for 

these specific classes in the selection of the generally better technique.  Another 

contributing factor in this decision was the multivariate normality of each of the 

classes. 
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VF1 - K-Means Pre-Clustering AFAR
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Figure 4.13 Run05 K-Means versus SEM Pre-Clustering Comparison 
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V1 - SEM Pre-Clustering ROC
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V1 - SEM Pre-Clustering AFAR
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Figure 4.14 Run03 K-Means versus SEM Pre-Clustering Comparison 

 

 The MVN GoF metric for the data in each of the classes generated by K-

Means, SEM, and SDC are included in Figure 4.15.  Class assignments do not 

necessarily compare for the SDC technique, but the figures give a sense for the 

distribution of species within the classmaps.  The MVN improvement of SEM 

over K-Means is clear, with only one K-Means class (the light sand) measuring 

more normal that its SEM counterpart.  Incidentally, that light sand class is the 

K-Means background that most dramatically outperformed SEM in the 

detection results.  The SDC MVN shows some improvement over SEM for many 

of the classes, but in both cases SDC resulted in a class that was extremely non 

multivariate normal.  The only two classes actually used in the target guided 

method were the SDC light grass and scrub brush classes.  Both of these  
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Figure 4.15 Run05 and Run03 Pre-Clustering MVN 
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classes were less multivariate normal than their SEM counterparts, but the 

class providing the best detection performance was predictable by statistical 

distance from the target spectrum. 

 Based on the marginal improvement of detection and the overall 

improvement in MVN, the SEM technique was used for the remainder of the 

experiment.  The extent to which SEM provides improvement when used for 

pre-clustering is dependant on the data.  For this data, the improvement in 

MVN did not translate directly into a lower false alarm rate; a more multivariate 

normal background provided a theoretical advantage in this application. 

 

4.2.3 Pre-Clustering Detection Results 

 The eight techniques for pre-clustering detection were applied to the 

detection of the targets in the test data.  As with other results, the individual 

ROC curves and AFAR graphs are in Appendix A.  Figures 4.16 and 4.17 are the 

summary of the averaged AFAR for the three high contrast and the three low 

contrast targets for each scene.  A number of observations were made from 

these results which gave insight into the performance of these background 

characterization techniques for different targets and backgrounds. 

 The first and most significant observation was the good performance of 

the class mean neighbor guided – mode (CMNG-M) technique.  This method 

clearly dominated detection in the desert scene and performed well in detection 

of low contrast targets in the forest scene.  This was an important finding 

considering that the detection of low contrast targets is of more concern to the 

research community.  For the high contrast forest scene targets, the CMNG-M  
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Low Contrast Target Average AFAR Comparison
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Figure 4.16 Run05 Pre-Clustering Summary AFAR Plots 
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Figure 4.17 Run03 Pre-Clustering Summary AFAR Plots 
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method performed well for full target pixels, but resulted in an AFAR an order of 

magnitude higher than other methods for the all and sub pixel targets.  

Interestingly, for those cases, the local mean neighbor guided-mode technique 

performed very well.  This followed the expectation that the local mean was 

better suited to match sub pixel mixtures and the class mean was better suited 

to match false alarms elsewhere in the image.  This expectation was generally 

reinforced by the high contrast forest scene results, where three out of the four 

class mean techniques outperformed their local mean counterparts for the full 

pixels, and vice versa for the sub pixels.  This was not reinforced by the desert 

scene, but the fact that the desert scene high contrast targets were found with 

fewer false alarms by the class means for every pixel type led to the conclusion 

that the local mean techniques failed in the desert scene.  This may have been 

due to image noise, higher spatial frequency of the class distribution, the 

proximity of targets in the scene, or the lesser extent of the adjacency effect due 

to the flat terrain (little shine from nearby objects) and the dry atmosphere 

(little scattering of ground leaving photons).  Any of these may have given the 

class mean techniques in general (and the CMNG-M method specifically) an 

advantage in this scene. 

 Of the other methods, the target guided techniques worked well for both 

scenes.  The local mean target guided (LMTG) method worked well on the high 

contrast forest scene targets and the class mean target guided (CMTG) 

technique worked well for high contrast desert scene targets.  The LMTG and 

CMNG methods are somewhat complementary, using a local or class mean and 

a class or local covariance.  These methods seem to have combined the pre-

clustered statistics in the best ways for these scenes.  The two methods which 
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clearly underperformed were the pixel guided and the neighbor guided – mixed 

techniques.  As suspected, the class identity of the test pixel was not the 

optimal method of class selection.  Interestingly, the linear mixture of class 

statistics proved to be suboptimal as well.  The mode techniques outperform the 

mixture techniques without incorporating information about all of the 

surrounding pixels.  This indicated that in these images, the sub pixel mixture 

interference was dominated by a single source and did not combine evenly 

according to population fraction. 

 Given the overall level of performance, the CMNG-M technique was 

considered the best method for detection using pre-clustering.  In order to 

explore the influence of target contamination in this method, an extensive 

experiment was performed using several realistic exclusion cases.  For 

comparison, the LMTG method was included in the study.  The next section will 

discuss how these results might guide the realistic application of these 

methods. 

 

4.2.4 Pre-Clustering Target Influence 

 The one practical difficulty to implementing a pre-filtering or iterative 

target exclusion scheme is selecting a threshold for generating the exclusion 

map.  In order to guide this decision, an experiment was conducted setting 

different levels of thresholds for two separate pre-filtering methods: SAM 

exclusion (SamX) and auto exclusion (AutoX).  The selected thresholds, 

illustrated in Figure 3.17, were based on detection rate.  Again, this does not 

represent a realistic implementation of a target exclusion scheme, but may help 

guide the selection of an appropriate threshold for real-world applications.  ROC 
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curves and AFAR graphs for each of the four targets used in this experiment are 

provided in Appendix A.  Figure 4.18 shows the average AFAR for detection 

using different levels of exclusion.  From the figure, it is clear that detection 

using the matched filter with no exclusion (X-1) is an improvement on the 

baseline SAM algorithm (SAM) provided in the figure for reference.  However, 

when applying these detection results to create an exclusion map, the SAM 

results thresholded to exclude all of the target pixels seemed to be the best 

method.  The fact that higher levels of exclusion provide improved results 

supports the use of loose thresholds for real-world target detection problems.  

Additionally, SAM exclusion outperformed auto exclusion due to a simple 

conceptual difference between the two.  As stated earlier, auto exclusion was 

included in this experiment in an attempt to match the exclusion technique to 

the detection algorithm.  Because higher levels of exclusion are preferable, 

matching the pre-filtering and detection algorithms may not be desirable.  Non-

target pixels in the overlapping distribution of the SAM results may not be 

pixels that a matched filter needs to suppress as false alarms.  This is certainly 

not the case for auto exclusion, as the species in the overlapping region would 

expectedly be nearly identical.  Additionally, noting that the perfect exclusion of 

targets did not always provide the best false alarm rates, it is possible that SAM 

exclusion was eliminating non-target species that were detrimental to the 

background in some other way.  The exclusion of anomalous, noise, or 

otherwise undesirable pixels may also be accomplished by statistical distance 

exclusion, the results of which will be discussed in the next section. 
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Figure 4.18 Pre-Clustering Target Influence Summary AFAR Plots 
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 The spectral exclusion problem also relates to the question of how the 

detection result is to be used.  The desired level of exclusion should relate to the 

level of acceptable false alarms.  In this study, the AFAR metric was calculated 

over all detection rates, tailoring the results for an application like image 

screening where higher levels of false alarms are acceptable in exchange for 

higher average detection rates for all pixels on a target.  In this case, the results 

showed that a loosely thresholded SAM was most appropriate.  The other case 

is an automated detection program that requires a very low false alarm rate 

while finding some of the targets, but can accept a higher overall number of 

false alarms.  While the results of this experiment do not allow for conclusions 

about this type of application, it is likely that the auto exclusion method would 

be preferable.  Given a well formed yet fully contaminated background, the 

matched filter generally outperformed SAM.  In several cases where SAM found 

several false alarms before finding the first target pixel, the contaminated 

matched filter (X-1) was able to find a small number of target pixels without 

false alarms.  By excluding the targets from the exposed end of the X-1 

detection statistic distribution without excluding background pixels, the false 

alarm rate of the pixels in the overlapping region would decrease.  The results 

in this section may serve to guide exclusion for image screening, but more in-

depth experimentation is required to examine the role of auto exclusion for 

automated pre-filtering. 

 

4.2.5 Statistical Distance Exclusion and Low Contrast Detection 

 Statistical distance exclusion (SDE) was tested for the potential of 

improving the MVN of class statistics.  During the course of this research, SDE 
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was implemented in many forms.  The only parameter to select in the process is 

the number of pixels to discard for each class. In an attempt to automate the 

process, development of a program was begun to mathematically identify the 

knee in the distribution from a chi-squared MVN test curve.  The completion of 

this tool was left for future work, but results from the manual method are 

provided in Appendix A.  The goodness-of-fit was generally improved by the SDE 

method, but given the loose relationship between MVN and detection results, 

the matter of achieving improved background characterization remained.  To 

narrow the scope of this examination, one method was selected to test the 

potential of SDE.  Figure 4.15 shows that the SDC backgrounds used for the 

target guided methods were slightly less multivariate normal than their 

corresponding SEM classes.  Therefore, the LMTG method was selected, and 

SDE was applied to improve the MVN of the closest class.  One percent of the 

class was eliminated, and the MVN GoF improved from 97.53 to 35.42.  The 

results of detection using these statistics are given in Figure 4.19, where the 

results with full statistics are labeled LMTG and the SDE results are labeled 

LMTG – SDE.  The SDE backgrounds improved results for some but not all 

cases.  The outliers in this class seemed to represent important sources of 

interference for certain targets, but not for others.  This led to the trade-off 

between improving the MVN and suppressing false alarm pixels in the 

background. 

 The low contrast detection concept follows the mean subtraction scheme 

in equation 3.7.  With the tools available and the modification simple to 

accomplish, cases were run using this type of mean subtraction during pre-

clustering for the low contrast targets in the forest scene.  Because this type of 
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mean subtraction infers a local mean, the LMTG method was also appropriate 

for this study.  The results of detection performed while mean subtracting both 

test pixel and target spectrum (the original LMTG) and mean subtracting only 

the test pixel (LMTG – LC) are shown in Figure 4.19.  The results for these four 

targets showed that low contrast detection can both improve and hinder 

detection.  An interesting observation was that the targets F8 and V1, which 

had an all pixel AFAR greater than 1.0E-1, experienced improved results with 

low contrast detection, while targets VF1 and VF6, where the all pixel AFAR was 

below 1.0E-1, did not.  This indicated that the technique may only work for 

extremely low contrast cases.  It was interesting that results for VF6 were 

hindered by low contrast detection but improved by SDE, while VF1 was not 

improved by either method.  Each method was applied independently, but some 

level of a combination of methods (to include pre-filtering target exclusion) may 

provide the best background for a given target. 
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F8 - LMTG Low-Contrast and SDE ROC
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F8 - Low-Contrast and SDE 
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Figure 4.19 SDE and Low Contrast ROC and AFAR Results 
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4.3 Comparison of All Results 

 Considering the results of each background characterization method 

separately, observations have been made about the subtle and significant 

differences in the selection of parameters for each method.  Target approach 

regions, RX window sizes, and methods for the selection of pre-clustering 

statistics have provided backgrounds leading to varying levels of detection 

performance.  This study has explored the way in which each of these 

techniques provides greater multivariate normality and several methods for 

excluding target species from these backgrounds have been examined. As a 

final comparison, Figures 4.20 and 4.21 are the average AFAR for high and low 

contrast targets in both scenes for the representative techniques from each 

category.  ROC curves and AFAR graphs for these three techniques for each 

individual target are included in Appendix A.  By direct comparison using all of 

the target pixels, the spectral subsetting CMNG-M technique provides the best 

backgrounds for all but the forest scene high contrast targets.  The hypothesis 

that RX is better suited for sub pixel detection and pre-clustering is better 

suited for full pixel detection was supported by all except the forest scene low 

contrast results.  In general, the spatial or spectral subsetting methods 

provided backgrounds resulting in one-tenth to two orders of magnitude 

improvement in AFAR for all pixels compared to the scene-wide and target 

approach backgrounds.   

 These improvements were achieved by matching the source of mixture 

interference or false alarms elsewhere in the scene and by improving the 

multivariate normality of the data seeding the covariance in the matched filter.  

While the RX sliding window was able to improve the MVN to a greater extent, 
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both spatial and spectral subsetting techniques provided backgrounds that 

were multivariate normal to an acceptable level.  Given these relatively well 

formed statistics, the ability of each technique to match the interference 

dominated the result. 

 Targets were perfectly excluded from each of these backgrounds, so one 

final consideration is the susceptibility of these techniques to target 

contamination.  The potential for each of these techniques to become 

contaminated in a real-world application is related to the level of available a 

priori information and is therefore not quantifiable.  Target influence is related 

to the nature and number of target and background pixels in the background 

distribution and not the method used for selecting the background pixels.  

Therefore, all of the techniques in the study are exposed to the contamination 

problem and all need to employ spatial or spectral target exclusion when 

appropriate. 
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Figure 4.20 Run05 High and Low Contrast AFAR Final Comparison 
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Figure 4.21 Run03 High and Low Contrast AFAR Final Comparison 
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5.0 Conclusions 

 The results of a comparative analysis of stochastic background 

characterization techniques have led to many observations about the way each 

method attempts to match the source of detection interference, improve the 

multivariate normality of the data, and handle the influence of target 

contamination.  The main experiment removed the influence of target 

contamination through perfect exclusion and each technique improved the 

multivariate normality of the background to a level where small variations did 

not equate to improved detection performance.  The observed differences in 

average false alarm rate (AFAR) are therefore more closely related to the ability 

of each technique to match the interference-causing false alarms.  In the direct 

comparison of detection results, the RX sliding window and pre-clustering using 

the class mean neighbor guided – mode method consistently outperformed the 

scene-wide and target approach backgrounds.  Improvements in the AFAR of 

one-tenth to two orders of magnitude were observed for all pixels on low and 

high contrast targets in the Forest Radiance I Run05 and Desert Radiance II 

Run03 images.  Throughout the experiment, observations were made which 

may assist in the practical implementation of these methods.  Possibilities for 

additional experimentation to further inform real world applications of 

background characterization were also noted. 

 For the target approach method, the scene-wide statistics provided a 

good matched filter background for an image with a relatively good measure of 

multivariate normality.  The forest scene, with the targets removed, did not 

stray far enough from normality to confound detection results.  The desert 

scene, however, provided an example of scene-wide statistics that failed as a 
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background.  In this case, it was suggested that the scene-wide measure of 

MVN or a measure of sensor noise levels would prompt the selection of a mixed 

target approach region to serve as background.  The influence of target 

contamination was proven using the target approach method as target pixels 

were implanted in a target-free data pool and a steady change in the shape of 

the covariance matrix was observed.  This change was correlated to a decrease 

in the performance of detection with only a few pixels added to a pool of 18,000 

samples. 

 The RX sliding window algorithm with four concentric windows was 

tested to identify the proper sizing for the covariance window.  The commonly 

accepted rule of selecting the number of samples equal to ten times the number 

of bands held for these targets and backgrounds.  This result conflicted with 

the application of RX using selection of the most multivariate normal 

background.  The number of samples used to estimate the covariance created a 

statistical stability that was more important than the statistical MVN in the 

application of the matched filter.  In practical application, the type of data, 

noise levels, and scene clutter content will change this relationship.  

Additionally, the possibility of target contamination, which is driven by the level 

of a priori knowledge about the target and scene, must influence window size 

selection.  The trade space includes the desire to capture the immediate 

surroundings of the target, the MVN of the data in the covariance window, the 

possibility of including targets, and the influence those targets will have on the 

background.  The use of spatial and spectral target exclusion is extremely 

valuable when needed, but can lead to suboptimal performance if improperly 

implemented.  
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 Pre-clustering was performed by classifying the imagery, developing 

statistics using the classmaps, and then deciding how to apply those statistics 

to the detection problem.  K-Means and stochastic expectation maximization 

(SEM) were compared, and SEM was shown to generate backgrounds that 

provided modest improvements in detection but considerable improvements in 

background MVN.  Eight methods were developed to apply pre-clustered 

statistics to detection by the selection of a local or class mean, and by guiding 

of class selection by the target spectrum, the pixel class assignment, or the 

class assignment of the neighbors of the test pixel (for use in either the mode or 

linear mixture of class statistics).  The target guided methods required the use 

of a statistical distance classifier (SDC) in order to allow for predictability in the 

selection of the best background class given the target spectrum.  The other 

methods, which used statistics from more than one class, employed the results 

of SEM classification.  From the comparison of detection results, the class mean 

neighbor guided – mode (CMNG-M) technique demonstrated an advantage over 

other pre-clustering background characterization methods.  CMNG-M was the 

best method for the desert scene and performed well in the forest scene for the 

detection of low contrast targets.  The local mean target guided method 

performed well for the high contrast targets in the forest scene and represents a 

conceptual counterpart to the CMNG-M method.  The pixel guided and neighbor 

guided – mixture methods consistently underperformed the other techniques.   

 The influence of target on the pre-clustered backgrounds was studied 

using the SAM algorithm as well as the matched filter results of a given method 

with a contaminated background.  Several levels of exclusion were tested, and 

the best detection performance was achieved when spectral angle mapper (SAM) 
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was used to eliminate all of the target pixels.  While a large number of 

background pixels were excluded during pre-filtering to this level, it was 

apparent that the species in the overlapping portion of the SAM detection 

statistic distribution did not represent the highest likelihood matched filter false 

alarm.  In this case, mixing modalities between the pre-filtering and detection 

algorithm seemed to provide an advantage. 

 The removal of pixels from the background using statistical distance 

exclusion (SDE) was another method studied.  Discarding the outliers of the 

background distribution served to remove pixels that did not truly belong to 

their assigned class and to increase the multivariate normality of the 

background.  MVN improvements were demonstrated, but SDE did not 

translate into improved detection in every case.  In these instances, the benefit 

of including outliers in the distribution in order to suppress the unwanted 

signal outweighed the benefit from improved MVN. 

 An alternative mean subtraction method, which was aimed at improved 

detection for low contrast targets, was tested using all of the low contrast 

targets from the forest scene test set.  The method provided improvement for 

two targets with an original AFAR of greater than one-tenth, but was 

detrimental to two targets with an AFAR less than one-tenth.  This technique 

may be valuable only for extremely low contrast targets.   
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6.0 Future Work 
 

 Several aspects of the stochastic background characterization problem 

remain underdeveloped or unexplored.  First and most importantly is an 

accurate measure of target contrast for a given detector.  Knowing and 

understanding the difficulty of finding the target being sought is extremely 

valuable for these techniques.  In this study, target contrast was determined 

after the fact through observation of AFAR.  In practical application, a metric 

needs to be developed to provide this measure beforehand.  This might go hand 

in hand with the development of an image quality metric for hyperspectral 

imagery (HSI) data.  Both of these tools would inform the process and guide 

decision making for characterizing the background. 

 Another important undertaking is the application of the methods 

developed in this study to more and different data sets.  One specific study 

would be measuring the relative performance of RX and pre-clustering on 

scenes with a high level of spatial clutter.  The expectation is that pre-clustering 

would be less vulnerable to clutter and provide relatively normal backgrounds 

in scenes where the RX sliding window would fail.  The use of pre-clustering 

statistics may also be changed in high clutter applications, or for different types 

of target detection.  Applying SEM to pre-cluster high clutter imagery, or to 

search for different target such as plumes, may involve running each class 

independently and then fusing the results.  For the RX window, high clutter 

imagery may increase the influence of the inversion method, necessitating a 

closer look at the automatic switch from Gaussian elimination to the Moore-

Penrose pseudo inverse included in this implementation.  Given the inequality 
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of these methods, another way to handle singular RX covariance matrices may 

need to be developed. 

 Considering that a relatively stationary class mean with a covariance 

guided by species local to the test pixel provided good results for pre-clustering, 

the same type of parameters may need to be explored for RX.  In this 

experiment, the size of the covariance window was varied and the mean window 

was held constant.  Another experiment might vary the size of the mean window 

to determine if a more stable mean would be beneficial. 

 This study looked at eight different pre-clustering techniques but there 

are undoubtedly other ways to use classification results to improve detection.  

Continued work should look further into variations on some of the successful 

algorithms from this study.  As a variation on the LMNG-M method, a future 

experiment might test the calculation of a local mean with only the pixels in the 

mode class.  This would make the technique more similar to the CMNG-M, but 

would capture the local variability within the class during the mean 

subtraction. 

 More examination is also needed to determine the utility of SDE and low 

contrast detection.  The theoretical advantages provided by these techniques 

need to be paired with more concrete guidelines for their application.  One 

suggested improvement for SDE is excluding outliers on both ends of the 

distribution.  Some of the classes exhibited tails at the high and low statistical 

distances and excluding only the high valued outliers worsened the multivariate 

normality and the performance.  Automating the process of identifying the knee 

(or knees) in the distribution would be helpful in implementing this technique. 
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 During analysis of the detection results, several algorithms perform 

similarly or with only modest improvement.  To put small improvements in 

perspective, the development of a ROC or AFAR confidence interval would be 

very useful.  With some degree of certainty attached, more aggressive 

conclusions may be reached about the relative capability of detection 

algorithms. 

 Another technique to consider is the automated implantation of sub pixel 

targets into every pixel in the scene to generate target and background 

distributions of equal size.  This method would especially be applicable to any 

background characterization technique that has a spatial component and 

would remove the influence of spatial target location from the results. 

 Finally, the suite of pre-clustering techniques should be tested on more 

data and for more targets, including concealed or contaminated targets.  While 

the CMNG-M was considered the top performing algorithm in general, other 

techniques were significantly better for specific targets. 
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APPENDIX A – Individual Detection Results 

Full Scene and Target Approach Method ROC Curves 
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Figure A.1 Run05 Target Approach ROC Curves 
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Figure A.2 Run03 Target Approach ROC Curves 
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Full Scene and Target Approach Method AFAR 

C5 - Target Approach Method AFAR
2.

39
E

-0
3

3.
89

E
-0

6

6.
49

E
-0

4

1.
31

E
-0

3

1.
77

E
-0

6

2.
96

E
-0

5

1.
23

E
-0

3

2.
79

E
-0

7

1.
01

E
-0

4

1.
27

E
-0

2

6.
95

E
-0

4

1.
90

E
-0

23.
04

E
-0

3

1.
99

E
-0

8

3.
55

E
-0

3

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
All Pixels Full Pixels Sub Pixels

A
ve

ra
ge

 F
al

se
 A

la
rm

 R
at

e 
(A

FA
R

)

Grass
Mixed
Road
Trees
Scene-Wide

F3 - Target Approach Method AFAR

1.
26

E
-0

2

1.
06

E
-0

6

8.
84

E
-0

2

3.
92

E
-0

3

1.
77

E
-0

7

2.
75

E
-0

2

1.
14

E
-0

2

7.
97

E
-0

2

5.
81

E
-0

3

4.
07

E
-0

2

2.
0E

-0
2

1.
4E

-0
1

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
All Pixels Full Pixels Sub Pixels

A
ve

ra
ge

 F
al

se
 A

la
rm

 R
at

e 
(A

FA
R

)

Grass
Mixed
Road
Trees
Scene-Wide

0.
0

0.
0

0.
0

 
F4 - Target Approach Method AFAR

1.
62

E
-0

4

3.
58

E
-0

6

4.
06

E
-0

4

2.
04

E
-0

5

1.
06

E
-0

6

5.
02

E
-0

5

7.
62

E
-0

5

9.
29

E
-0

7

1.
92

E
-0

4

9.
03

E
-0

3

1.
39

E
-0

5

2.
29

E
-0

2

1.
05

E
-0

5

1.
33

E
-0

7

2.
63

E
-0

5

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
All Pixels Full Pixels Sub Pixels

A
ve

ra
ge

 F
al

se
 A

la
rm

 R
at

e 
(A

FA
R

)

Grass
Mixed
Road
Trees
Scene-Wide

F8 - Target Approach Method AFAR

3.
81

E
-0

1

3.
50

E
-0

1

3.
96

E
-0

1

7.
32

E
-0

2

6.
20

E
-0

2

7.
88

E
-0

2

3.
69

E
-0

1

4.
34

E
-0

1

3.
36

E
-0

1

9.
19

E
-0

2

8.
49

E
-0

2

9.
55

E
-0

2

0.
68 0.

58

0.
74

1.E-02

1.E-01

1.E+00
All Pixels Full Pixels Sub Pixels

A
ve

ra
ge

 F
al

se
 A

la
rm

 R
at

e 
(A

FA
R

)
Grass
Mixed
Road
Trees
Scene-Wide

 
F13 - Target Approach Method AFAR

9.
62

E
-0

5

5.
28

E
-0

5

4.
87

E
-0

4

1.
62

E
-0

5

1.
28

E
-0

5

4.
64

E
-0

5

3.
34

E
-0

5

2.
77

E
-0

5

8.
49

E
-0

5

1.
83

E
-0

3

8.
08

E
-0

4

1.
10

E
-0

2

6.
63

E
-0

7

6.
63

E
-0

6

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
All Pixels Full Pixels Sub Pixels

A
ve

ra
ge

 F
al

se
 A

la
rm

 R
at

e 
(A

FA
R

)

Grass
Mixed
Road
Trees
Scene-Wide

0.
0

V1 - Target Approach Method AFAR

2.
51

E
-0

1

1.
69

E
-0

4

2.
29

E
-0

1

2.
60

E
-0

1

2.
28

E
-0

4

2.
26

E
-0

1

1.
71

E
-0

1

5.
26

E
-0

5

1.
77

E
-0

1

1.
91

E
-0

1

1.
44

E
-0

2

1.
88

E
-0

1

1.
97

E
-0

1

7.
78

E
-0

6

1.
27

E
-0

1

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
All Pixels Full Pixels Sub Pixels

A
ve

ra
ge

 F
al

se
 A

la
rm

 R
at

e 
(A

FA
R

)

Grass
Mixed
Road
Trees
Scene-Wide

 
VF1 - Target Approach Method AFAR

4.
25

E
-0

2

3.
86

E
-0

3

2.
19

E
-0

2

1.
49

E
-0

1

1.
27

E
-0

2

2.
33

E
-0

2

4.
40

E
-0

2

1.
48

E
-0

3

7.
94

E
-0

3

2.
28

E
-0

1

6.
84

E
-0

2

8.
49

E
-0

2

1.
09

E
-0

1

1.
55

E
-0

5

1.
03

E
-0

2

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
All Pixels Full Pixels Sub Pixels

A
ve

ra
ge

 F
al

se
 A

la
rm

 R
at

e 
(A

FA
R

)

Grass
Mixed
Road
Trees
Scene-Wide

VF6 - Target Approach Method AFAR 

1.
70

E
-0

2

3.
90

E
-0

3

4.
30

E
-0

2

1.
96

E
-0

1

2.
71

E
-0

2

2.
44

E
-0

2

2.
62

E
-0

2

8.
36

E
-0

3

6.
34

E
-0

2

2.
70

E
-0

1

8.
95

E
-0

2

9.
73

E
-0

2

8.
65

E
-0

2

3.
65

E
-0

3

4.
30

E
-0

2

1.E-03

1.E-02

1.E-01

1.E+00
All Pixels Full Pixels Sub Pixels

A
ve

ra
ge

 F
al

se
 A

la
rm

 R
at

e 
(A

FA
R

)

Grass
Mixed
Road
Trees
Scene-Wide

 
 

Figure A.3 Run05 Target Approach AFAR Plots 
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Figure A.4 Run03 Target Approach AFAR Plots 
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RX Sliding Window ROC Curves 
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Figure A.5 Run05 RX Sliding Window ROC Results 
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RX Sliding Window AFAR 
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Figure A.7 Run05 RX Sliding Window AFAR Plots 
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Figure A.8 Run03 RX Sliding Window AFAR Plots 
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4.1.2.3 RX Sliding Window MVN Gof 
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Figure A.9 Run05 RX Sliding Window MVN 
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Figure A.10 Run03 RX Sliding Window MVN 
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Pre-Clustering ROC Curves 
 

C5 - Spectral Subsetting ROC

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

False Alarm Rate

D
et

ec
ti

on
 R

at
e CMTG

LMTG
CMPG
LMPG
CMNG-M
LMNG-M
CMNG-X
LMNG-X

F3 - Spectral Subsetting ROC

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

False Alarm Rate

D
et

ec
ti

on
 R

at
e CMTG

LMTG
CMPG
LMPG
CMNG-M
LMNG-M
CMNG-X
LMNG-X

 
F4 - Spectral Subsetting ROC

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

False Alarm Rate

D
et

ec
ti

on
 R

at
e CMTG

LMTG
CMPG
LMPG
CMNG-M
LMNG-M
CMNG-X
LMNG-X

F8 - Spectral Subsetting ROC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.E-02 1.E-01 1.E+00

False Alarm Rate

D
et

ec
ti

on
 R

at
e CMTG

LMTG
CMPG
LMPG
CMNG-M
LMNG-M
CMNG-X
LMNG-X

 
F13 - Spectral Subsetting ROC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

False Alarm Rate

D
et

ec
ti

on
 R

at
e CMTG

LMTG
CMPG
LMPG
CMNG-M
LMNG-M
CMNG-X
LMNG-X

V1 - Spectral Subsetting ROC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

False Alarm Rate

D
et

ec
ti

on
 R

at
e CMTG

LMTG
CMPG
LMPG
CMNG-M
LMNG-M
CMNG-X
LMNG-X

 
VF1 - Spectral Subsetting ROC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

False Alarm Rate

D
et

ec
ti

on
 R

at
e CMTG

LMTG
CMPG
LMPG
CMNG-M
LMNG-M
CMNG-X
LMNG-X

VF6 - Spectral Subsetting ROC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

False Alarm Rate

D
et

ec
ti

on
 R

at
e CMTG

LMTG
CMPG
LMPG
CMNG-M
LMNG-M
CMNG-X
LMNG-X

 
 

Figure A.11 Run05 Pre-Clustering ROC Results 
 



 169

CR2 - Spectral Subsetting ROC
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Figure A.13 Run05 Pre-Clustering AFAR Plots 
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CR2 - AFAR Comparison
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Figure A.14 Run03 Pre-Clustering AFAR Plots 
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Figure A.15 Pre-Clustering Target Exclusion ROC Curves 
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Figure A.16 Pre-Clustering Target Exclusion AFAR 
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Figure A.17 SDE Chi-Squared Example for SEM Classes 1 – 3 
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Figure A.18 SDE Chi-Squared Example for SEM Classes 4 – 6 
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Figure A.19 Run05 Technique Comparison ROC Curves 
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Figure A.20 Run03 Technique Comparison ROC Curves 
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Figure A.21 Run05 Technique Comparison AFAR 
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APPENDIX B – IDL CODE 
 
;+ 
;Stochastic Expectation Maximization (SEM) Classification Algorithm 
;Written by:  Jason E. West 
;6 Oct 04 
;14Feb05 -- Changed to keep all classmaps 
;7Mar05 -- Changed to allow input classmap 
;13May05 -- Added Statistical Distance Classification 
 
;************************************************************************************************** 
;                               INPUTS 
; 
;   Image   - A multi/hyperspectral data set as [x,y,bands] 
;   M         - The upper bound number of classes [choose high] 
;   delP     - The threshold for minimum class probability, [0 to 1] 
;                 i.e. 0.1 eliminates classes with less than 10% of the image pixels 
;   delu     - The convergence threshold for change in class means, [0 to 1] 
;                 i.e. 0.1 stops the algorithm if means change less than 10% 
;   MaxIt   - The maximum number of iterations [choose high], if you don't see "SEM 
;                 has converged after X iterations" is means you never reached the 
;                 convergence criteria and you should raise MaxIt 
;   CMapIn- Can include a starting point class map to speed things along 
; 
;************************************************************************************************** 
;                               OUTPUT 
; 
;   ClassMap- An integer array [MaxIt,x,y] with each class assigned an integer 
; 
;************************************************************************************************** 
;                               KEYWORDS 
; 
;   Radiance - Set if the image is in radiance units (reflectance is default) 
;                    This is needed for carrying units (large or small) in the determinant. 
;   SDC        - Set to perform classification based on the statistical distance only 
; 
;************************************************************************************************** 
;                               SECTIONS 
; 
;   INITIALIZATION        - Assigns random statistics if not previously accomplished 
;   MAXIMIZATION        - Classifies pixels into class with maximum probability 
;   STOCHASTIC           - Calculates class statistics for each class 
;   delP THRESHOLD TEST  - Tests classes for minimum size requirement 
;   ESTIMATION                   - Generates new probabilities from class statistics 
;   delu COVERGENCE TEST - Tests classes for min change in mean to exit 
; 
;************************************************************************************************** 
;- 
 
Function SEM,ImageIn,M,delP,delu,MaxIt,CMapIn,Radiance=Radiance,SDC=SDC 
 
;Size inputs and set some variables 
print,'SEM started' + systime() & wait,1.0 
StartTime=double(systime(1)) 
 
isize=size(ImageIn) 
pixels=isize[1]*isize[2] 
bands=fix(isize[3]) 
Image = ptr_new(FltArr(pixels,bands)) 
*Image = reform(ImageIn,pixels,bands)       ;re-index the image into a pointer 
ClassMap = ptr_new(IntArr(pixels))     ;pointer to the class maps 
Result = intarr(isize[1],isize[2],MaxIt) 
EstFlag = 0                           ;Flags entrance into estimation section 
FailPFlag = 0                         ;Flags failure of the delP threshold 
InitFlag=0                             ;Counts how many times SEM reinitialized 
ConvergeInitFlag = 0   ;Flags Initialization to prevent convergence 
CMapInFlag = 0                ;Flags an input classmap 
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If n_elements(CMapIn) GT 0 Then Begin 
(*ClassMap)[*,*] = CMapIn[*,*] 
CMapInFlag = 1 
EstFlag = 1 
EndIf 
 
device,decomposed=0 & loadct,12   ;Set up the display 
 
;************************************************************************************************** 
 
For Iteration = 0,MaxIt-1 Do Begin 
 
 If M EQ 1 Then Begin 
     Iteration = MaxIt 
     print,format='(5X,"Thresholds set too tightly. Image classified as a single class.")' 
 EndIf 
 
;************************************************************************************************** 
;INITIALIZATION 
 
    ;Random Init -- generate uniformly distributed PDF for p(i|x) 
    If EstFlag EQ 0 Then Begin     ;Only do this if estimation is not P/A 
        pix=ptr_new(dblarr(pixels,M))  ;Points to p(i|x) 
        InitFlag=InitFlag+1    ;Count number of Initializations 
        ConvergeInitFlag = 1   ;Marks random initilization for (to skip) convergence test 
        icsize=floor(pixels/M)    ;Take every Mth pixel and assign it to a class 
        stragglers=Pixels MOD M  ;In case there aren't exactly M factorable pixels 
     
        For i=0l,M-1 Do Begin 
        For j=0l,icsize-1 Do Begin 
     (*pix)[j*M+i,i]=1 
        EndFor 
        EndFor 
 
         If Stragglers GT 0 Then Begin   ;This will pick up the straggler pixels and 
     For k=0l,Stragglers-1 Do (*pix)[icsize*M+k,0]=1 ;assign them all to the first class 
         EndIf 
     EndIf 
 
;************************************************************************************************** 
;MAXIMIZATION 
 
    ;Classify pixels into class of max p(i|x) 
    If CMapInFlag EQ 0 Then Begin 
        For i=0l,pixels-1 Do Begin 
           MaxPix=max((*pix)[i,*]) 
           NewClass=Max((where((*pix)[i,*] EQ MaxPix)+1)) 
           (*ClassMap)[i]=NewClass 
        Endfor 
        ptr_free,pix   ;Once classification has been done, pix isn't needed 
    EndIf Else CMapInFlag = 0 
 
    Result[*,*,Iteration] = reform(*Classmap,isize[1],isize[2]) 
 
    If ConvergeInitFlag EQ 0 Then Begin ;Don't display randomly initialized classmaps 
        window,iteration,xsize=isize[1],ysize=isize[2],title='Classmap'+string(iteration),xpos=0,ypos=0 
        tvscl,Reform(*ClassMap,isize[1],isize[2]) & wait,1.0 
    EndIf 
     
;************************************************************************************************** 
;STOCHASTIC 
 
    PrevCMean = ptr_new(dblarr(M,bands)) 
 
    If Iteration GT 0 Then *PrevCMean = *CMean    ;keep previous CMean for convergence test 
    If Iteration GT 0 Then ptr_free,CMean,CCov,pi 
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    ;Calculate the class statistics 
    CMean=ptr_new(dblarr(M,bands))               ;Pointer to M class mean vectors 
    CCov=ptr_new(dblarr(bands,bands,M))      ;Pointer to M class covariance matricies 
    pi=ptr_new(dblarr(M))                        ;Pointer to M class probabilities p(i) 
    ClassSize = ptr_new(dblarr(M)) 
 
    For i=0,M-1 Do Begin 
        ind=where(*ClassMap EQ i+1,ClassCounter) 
        (*ClassSize)[i] = ClassCounter 
 
        If (*ClassSize)[i] GT 1 Then Begin   ;Don't run calcs for empty classes 
        For j=0,bands-1 Do (*CMean)[i,j]=mean((*image)[ind,j],/double)   ;Mean 
        (*CCov)[*,*,i]=correlate(transpose((*image)[ind,*]),/covariance,/double)  ;Covariance 
        (*pi)[i]=(*ClassSize)[i]/double(pixels)      ;p(i) 
        EndIf Else (*pi)[i]=-1             ;Set p(i) = -1 for empty classes (error flag) 
 
    Endfor 
 
print,Format='(5X,"The p(i) for iteration",1X,I0,1X,"is")',iteration 
print,*pi & wait,0.01 
 
;************************************************************************************************** 
;delP THRESHOLD TEST 
 
If Min(*pi) GT delP Then Begin   ;only run estimation if class sizes meet threshold 
 
;************************************************************************************************** 
;ESTIMATION 
 
    ;GML classifier from Schott p 274, 
    ;p(i|x) ~ Di = ln[p(i)]- L/2*ln(2!pi) - 1/2*ln|S| - 1/2*(X-M)'S^-1(X-M) 
    ;implemented as:  D1        D2            D3                D4 
    ;only D4 is used if SDC keyword is set. 
 
    EstFlag=1            ;Sets Flag so that random initialization is not performed 
 
    pix=ptr_new(dblarr(pixels,M))           ;Points to p(i|x) (previous pix has been freed) 
    LUDCCov=Ptr_new(dblarr(bands,bands,M))  ;Points to LU Decomposition Class Covariance 
    ICCov=ptr_new(dblarr(bands,bands,M))    ;Points to the inverse of LUDCCov 
 
    For i=0,M-1 Do Begin 
        D1=alog((*pi)[i]) 
        D2=(bands*0.5)*alog(2*!DPi) 
 
       If keyword_set(Radiance) Then Begin 
            ;This calculates the determinant by LU decomposition carrying large numbers 
             *LUDCCov=(*CCov)[*,*,i] ;Copy the class covariance into a temp matrix 
             LA_LUDC,*LUDCCov,LUTemp  ;Perform LU decomposition on that matrix 
             CarryFactor = Round(ALog10(Max(Diag_Matrix(*LUDCCov))))-1;Find N in *10^N for the diagonal 
             ;Divide the diagonal by that factor, take the product (i.e LA_Determ), compensate for the carry factor 
             ;remember ln(a) + ln(b) = ln(ab)   
      D3=double(0.5)*((alog(abs(Product(Diag_Matrix(*LUDCCov)/$ 
            (double(10)^carryFactor)))))+alog(double(10)^CarryFactor)) 
        EndIf Else Begin 
             ;This calculates the determinant by LU decomposition carrying small numbers 
             *LUDCCov=(*CCov)[*,*,i] ;Copy the class covariance into a temp matrix 
             LA_LUDC,*LUDCCov,LUTemp  ;Perform LU decomposition on that matrix 
             CarryFactor = Round(ALog10(Min(abs(Diag_Matrix(*LUDCCov)))))-1;Find N in *10^-N for the diagonal 
             ;Divide the diagonal by that factor, take the product (i.e LA_Determ), compensate for the carry factor 
             ;again ln(a) + ln(b) = ln(ab)   
      D3=double(0.5)*((alog(abs(Product(Diag_Matrix(*LUDCCov)/$ 
            (double(10)^carryFactor)))))+alog(double(10)^CarryFactor)) 
        EndElse 
 
       ;Invert the covariance using IDL Invert for N > bands or PseudoInvert for N < bands 
        If (*ClassSize)[i] GE Bands $ 
        Then *ICCov=Invert((*CCov)[*,*,i])$ 
        Else *ICCov=(Invert(transpose((*CCov)[*,*,i])##(*CCov)[*,*,i])) ## transpose((*CCov)[*,*,i]) 
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        For j=0l,pixels-1 Do Begin  
 
        D4 = double(0.5)*(transpose((*Image)[j,*]-(*CMean)[i,*]) ## $ 
  reform(*ICCov,bands,bands) ## ((*Image)[j,*]-(*CMean)[i,*])) 
 
        ;Combine the four factors (or just take D4 for SDC) 
        IF Keyword_Set(SDC) Then (*pix)[j,i] = D4  Else (*pix)[j,i] = D1 - D2 - D3 - D4 
 
    EndFor 
    EndFor 
 
ptr_free,LUDCCov,ICCov,ClassSize 
 
;************************************************************************************************** 
 
EndIf Else Begin  ;End TEST for delP threshold - if max(pi) LT delP, estimation has been skipped 
 M = M - 1       ;Decrement number of classes 
 EstFlag=0       ;Reset Estimation Flag to ensure random re-initialization 
 FailPFlag = 1   ;Mark Failure of delP threshold test and skips Convergence Test 
EndElse 
 
;************************************************************************************************** 
;delu CONVERGENCE TEST 
 
If iteration EQ 0 Then FailPFlag=0 Else Begin ;PrevCMean is not defined for 0th iteration 
 
   If FailPFlag GT 0 Then FailPFlag = 0 Else Begin ;Don't converge/reset flag if you've just failed the delP test 
 
        If ConvergeInitFlag GT 0 Then ConvergeInitFlag=0 Else Begin ;Don't converge/reset flag on randomly  
             initialized data 
     MeanCMean=ptr_new(dblarr(M)) 
     MeanPMean=ptr_new(dblarr(M)) 
     For i=0,M-1 Do Begin 
         (*MeanCMean)[i]=Mean((*CMean)[i,*]) 
         (*MeanPMean)[i]=Mean((*PrevCMean)[i,*]) 
     EndFor 
 ;Absolute Change Fraction for the Mean Mean 
     ACFM = (abs(*MeanCMean - *MeanPMean)) / *MeanPMean 
 print,format='(5X,"The max ACFM for iteration",1X,I0,1X,"is")',iteration 
        Print,Max(ACFM) & wait,1.0 
     If max(ACFM) LT delu Then Begin 
            print,format='(5X,"SEM has converged after",1X,I0,1X,"iterations.")',Iteration 
            wait,1 
            Iteration=MaxIt 
    EndIf 
     ptr_free,PrevCMean,MeanCMean,MeanPMean 
 
      EndElse 
   EndElse 
EndElse   ;End TEST for convercence 
 
;************************************************************************************************** 
 
ENDFor ;End iterations - increments iteration # 
;************************************************************************************************** 
;RESULTS 
 
print,format='(5X,"SEM Initialized",1X,I0,1X,"times for this run.")',InitFlag 
print,format='(5X,"SEM found",1X,I0,1X,"classes in the image.")',M 
EndTime = double(systime(1)) 
RunTime = EndTime - StartTime 
print,format='("SEM completed",2X,A24,2X,"and lasted",1X,I5,1X,"seconds.")',systime(),RunTime 
 
Return,Result 
 
ptr_free,Image,ClassMap,CMean 
 
END ;SEM 
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;+ 
;RX Sliding Window Detection 
;Written by:  Jason West 
;18 June 05 
 
;********************************************************************************************** 
;                               FUNCTION 
; 
;   This program moves a sliding detection window over an HSI image, and  
;   runs a spectral matched filter on the center pixel of the window using a  
;   mean calculated with pixels outside of the detection window, but inside  
;   of a specified mean window, and a covariance calculated with pixels  
;   outside of the detection window, but inside of a specified covariance window. 
; 
;   The algorithm contains no spatial matched filter, but the size of the detection 
;   window should be approximately twice the size of the target to ensure no target 
;   pixels are included in the covariance calculation. 
; 
;           _____________________________ 
;          |                    1                      |Covariance Window 
;          |  1  ___________________        | 
;          |    |              1              |Mean Window 
;          |    |        __________      |      | 
;          |    |       |              |Exclusion Window 
;          |    |       |              |     |      | 
;          | 1 |       |      X  Detection Pixel 
;          |    |       |              |     |      | 
;          |    |  1   |_________|  1 |  1  | 
;          |    |                              |      | 
;          |    |___________________|      | 
;          |           1               1              | 
;          |____________________________| 
; 
; 
; 
;********************************************************************************************* 
;                               INPUTS 
; 
;   Image         - A multi/hyperspectral data set as [x,y,bands]. 
;   Target         - A target spectra as [1,bands]. 
;   Cov_Win     - The odd integer side-length of the covariance window to be used (in 
;                        pixels).  Should be equal to the sqrt of the number of bands in the 
;                        image plus the size of Det_Win AT A MINIMUM. 
;   Mean_Win  - The odd integer side-length of the mean window to be used (in pixels). 
;   Exl_Win      - The odd integet side-length of the exclusion window to be used (in 
;                        pixels).  Should be at least twice the size of the target. 
;   XMap          - Location of possible target pixels to be excluded from the background. 
;                        where pixels of value NE 0 are excluded and EQ 0 of kept. 
;   CCov           - A common covariance to be used for all windows.  i.e. using only a 
;                        sliding mean. 
; 
;********************************************************************************************* 
;                               KEYWORDS 
; 
;   Low_Contrast - Set to perform mean subtraction on only the test pixel and not 
;             the target spectrum.  May be used for extrememly low contrast targets. 
; 
;********************************************************************************************* 
;                               OUTPUT 
; 
;   DetRes - An array [x,y] giving the target detection statistic. 
; 
;********************************************************************************************* 
;                               SECTIONS 
; 
;   SetUp       - Reformat/size/test inputs 
;   Detection  - Calculate covariance and run detection for all windows 
;   Results     - Stop the clock, print the time, return the results 
;- 
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Function RX,Image,Target,Cov_Win,Mean_Win,Exl_Win,XMap,CCov,Low_Contrast=Low_Contrast 
 
;********************************************************************************************** 
;                                 SETUP 
 
;Check inputs and set some variables 
 
StartTime = double(systime(1))  ;start the clock 
isize=size(image)     ;size the image 
ix=isize[1] 
iy=isize[2] 
bands=isize[3] 
pixels=ix * iy 
Cov_Win = (2.0 * Floor(Cov_Win/2.0)) + 1.0   ;ensure window sizes are odd 
Mean_Win = (2.0 * Floor(Mean_Win/2.0)) + 1.0 
Exl_Win = (2.0 * Floor(Exl_Win/2.0)) + 1.0 
 
print,format='("Targets in the outer",1X,I0,1X,"pixels will not be detected!")',Floor(Cov_Win / 2.0) & wait,0.1 
 
BackWindow = ptr_new(fltarr(bands,Cov_Win^2.0 - Exl_Win^2.0))   ;The sliding covariance window 
MeanWindow = ptr_new(fltarr(bands,Mean_Win^2.0 - Exl_Win^2.0))  ;The sliding mean window 
XWindow = ptr_new(fltarr(Cov_Win^2.0 - Exl_Win^2.0))            ;The exclusion map window for covariance 
XMWindow = ptr_new(fltarr(Mean_Win^2.0 - Exl_Win^2.0))      ;The exclusion map window for mean 
BackCov = ptr_new(dblarr(bands,bands))                                  ;The covariance of BackWindow 
BackCovI = ptr_new(dblarr(bands,bands))                                 ;Inverse of the covariance 
BackMean = ptr_new(dblarr(1,bands))                                       ;Mean of Backwindow 
DetRes = ptr_new(dblarr(ix,iy))                                                  ;The detection results 
NoXSlides = (ix - Cov_Win - 1)                         ;how many slides in the x direction 
NoYSlides = (iy - Cov_Win - 1)                         ;how many in y 
NoWindows = (NoXSlides+1) * (NoYSlides+1)   ;how many total subsets 
ComAdj = ((Cov_Win - Exl_Win)/2.0)               ;common index adjustment for the cov window 
CenPix = ceil(Cov_win/2)                                ;the detection pixel 
Size13 = Cov_Win * ComAdj                            ;window sizes for the 4 cov windows 
Size24 = Exl_Win * ComAdj 
Size13M = Mean_Win * ((Mean_Win - Exl_Win)/2.0) ;window sizes for the 4 mean windows 
Size24M = Exl_Win * ((Mean_Win - Exl_Win)/2.0) 
MeanAdj = ((Cov_Win - Mean_Win)/2.0)                    ;common index adjustment for the mean window 
WinCount = 0                                                           ;count the slides to track progress 
;********************************************************************************************** 
;                                   DETECTION 
 
StartItTime = double(systime(1))  ;start the clock on iterations 
 
For j = 0l,NoYSlides-1 Do Begin   ;These increment to slide the window 
For i = 0l,NoXSlides-1 Do Begin 
 
    ;This defines the start/stop of the background window 
    xstart1 = i & xstart24stop1 = i + ComAdj & xstart3stop24 = i + ComAdj + Exl_Win & xstop3 = i + Cov_win 
    ystart123 = j & ystart4 = j + ComAdj + Exl_Win & ystop134 = j + Cov_Win & ystop2 = j + ComAdj 
 
    If n_elements(CCov) EQ 0 Then Begin 
       ;peel out the covariance window 
       (*BackWindow)[*,0:Size13-1] = $ 
 transpose(reform(Image[xstart1:xstart24stop1-1,ystart123:ystop134-1,*],Size13,bands)) 
       (*BackWindow)[*,Size13:Size13+Size24-1]= $ 
 transpose(reform(Image[xstart24stop1:xstart3stop24-1,ystart123:ystop2-1,*],Size24,bands)) 
       (*BackWindow)[*,Size13+Size24:2.0*Size13+Size24-1] = $ 
 transpose(reform(Image[xstart3stop24:xstop3-1,ystart123:ystop134-1,*],Size13,bands)) 
       (*BackWindow)[*,2.0*Size13+Size24:2.0*Size13+2.0*Size24-1] = $ 
 transpose(reform(Image[xstart24stop1:xstart3stop24-1,ystart4:ystop134-1,*],Size24,bands)) 
       ;find pixels to exclude 
       (*XWindow)[0:Size13-1] = $ 
 transpose(reform(XMap[xstart1:xstart24stop1-1,ystart123:ystop134-1],Size13)) 
       (*XWindow)[Size13:Size13+Size24-1]= $ 
 transpose(reform(XMap[xstart24stop1:xstart3stop24-1,ystart123:ystop2-1],Size24)) 
       (*XWindow)[Size13+Size24:2.0*Size13+Size24-1] = $ 
 transpose(reform(XMap[xstart3stop24:xstop3-1,ystart123:ystop134-1],Size13)) 
       (*XWindow)[2.0*Size13+Size24:2.0*Size13+2.0*Size24-1] = $ 
 transpose(reform(XMap[xstart24stop1:xstart3stop24-1,ystart4:ystop134-1],Size24)) 
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       ;include only the good pixels in the covariance 
       Include = Where(*XWindow EQ 0,N_Included) 
       CovData = (*BackWindow)[*,Include] 
       ;calculate and invert the covariance 
       *BackCov = Correlate(CovData,/Covariance,/Double) 
        If N_Included LT Bands $ 
    Then *BackCovI = Invert(*BackCov ## Transpose(*BackCov)) ## Transpose(*BackCov) $ 
                 Else *BackCovI = Invert(*BackCov,/double) 
    EndIf Else Begin  
     ;invert the stationary covariance 
     *BackCov = CCov 
     *BackCovI = Invert(CCov,/double) 
    EndElse 
 
    ;find the mean window pixels 
    (*MeanWindow)[*,0:Size13M-1] = transpose(reform(Image$  
 [xstart1+MeanAdj:xstart24stop1-1,ystart123+MeanAdj:ystop134-1 MeanAdj,*],Size13M,bands)) 
    (*MeanWindow)[*,Size13M:Size13M+Size24M-1]= transpose(reform(Image$ 
 [xstart24stop1:xstart3stop24-1,ystart123+MeanAdj:ystop2-1,*],Size24M,bands)) 
    (*MeanWindow)[*,Size13M+Size24M:2.0*Size13M+Size24M-1] = transpose(reform(Image$ 
 [xstart3stop24:xstop3-1-MeanAdj,ystart123+MeanAdj:ystop134-1-MeanAdj,*],Size13M,bands)) 
    (*MeanWindow)[*,2.0*Size13M+Size24M:2.0*Size13M+2.0*Size24M-1] = transpose(reform(Image$ 
 [xstart24stop1:xstart3stop24-1,ystart4:ystop134-1-MeanAdj,*],Size24M,bands)) 
    ;find the mean window pixels to exclude 
    (*XMWindow)[0:Size13M-1] = transpose(reform(XMap$ 
 [xstart1+MeanAdj:xstart24stop1-1,ystart123+MeanAdj:ystop134-1-MeanAdj],Size13M)) 
    (*XMWindow)[Size13M:Size13M+Size24M-1]= transpose(reform(XMap$ 
 [xstart24stop1:xstart3stop24-1,ystart123+MeanAdj:ystop2-1],Size24M)) 
    (*XMWindow)[Size13M+Size24M:2.0*Size13M+Size24M-1] = transpose(reform(XMap$ 
 [xstart3stop24:xstop3-1-MeanAdj,ystart123+MeanAdj:ystop134-1-MeanAdj],Size13M)) 
    (*XMWindow)[2.0*Size13M+Size24M:2.0*Size13M+2.0*Size24M-1] = transpose(reform(XMap$ 
 [xstart24stop1:xstart3stop24-1,ystart4:ystop134-1-MeanAdj],Size24M)) 
    ;include only good pixels in the mean data 
    Include = Where(*XMWindow EQ 0,N_Included) 
    MeanData = (*MeanWindow)[*,Include] 
    ;calculate the spectral mean 
    For m = 0l,bands-1 Do (*BackMean)[0,m] = Mean((MeanData)[m,*]) 
    ;run detection on the test pixel 
    If keyword_set(low_contrast) Then T = Target Else T = Target - *Backmean 
    dT = reform(T,bands,1) 
    x = reform(Image[i+CenPix,j+CenPix,*],1,bands) - *BackMean & xT = reform(x,bands,1) 
 
    (*DetRes)[i+CenPix,j+CenPix] = (dT ## *BackCovI ## x)^2 / $ 
             ((dT ## *BackCovI ## T) * (1.0 + (xT ## *BackCovI ## x))) 
     ;Keep track of progress 
     WinCount = WinCount + 1 
     If WinCount EQ floor(NoWindows/100.0) Then Begin 
         HundTime = double(systime(1)) & TimeToHund = HundTime - StartItTime 
         Print,Format='("RX is 1% complete, and will take approximately",$ 
                 1X,I8,1X,"seconds to complete.")',TimeToHund * 100.0  
         Beep & wait,0.1 & WinCount = Pixels 
     EndIf 
EndFor 
EndFor 
 
ptr_free,BackWindow,MeanWindow,BackCov,BackCovI ;release pointers 
 
;************************************************************************************************ 
;                                 RESULTS 
 
EndTime = systime(1) 
RunTime = EndTime - StartTime 
print,format='("RX completed  ",2X,A24,2X,"and lasted",1X,I5,1X,"seconds.")',systime(),RunTime 
Beep & wait,0.5 & Beep & wait,0.5 & Beep & wait,0.5 & Beep & wait,0.5 & Beep & wait,0.5 
 
Return, *DetRes 
ptr_free,DetRes 
 
END; RX 
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;+ 
;Class Mean Neighbor Guided Detection 
;Jason E. West 
;16 Nov 2004 
;17 Jul 2005, modified to add Low Contrast keyword and allow for unclassified class in class map 
; 
;This program runs a sliding square ring across a classification image to derive a background from 
;a the classes found in the ring, and then uses that background in the GLRT detector.  The user  
;specifies a stand off distance away from the center detection pixel to form the ring.  The basis  
;image and target, as well as the classification resulting image and an array of class covariances 
;must be provided.  These can be obtained by running a classification algorithm and then the  
;Class_Cov.pro code.  The result is a detection statistic image. 
; 
;************************************************************************************************************ 
;INPUTS 
; 
;   Image        - A multi/hyperspectral image as [x,y,bands] 
;   Target       - A target spectrum as [1,bands] 
;   Class_Image  - A classification result image as [x,y] where values correspond to class 
;   Class_CovMeans- An array of covariances and means as [bands+1,bands,classes] where the class 
;                        mean is located [0,*,class] 
;   Stand_Off    - The approximate side dimension of a target 
; 
;************************************************************************************************************ 
;OUTPUT 
; 
;   DetRes      - The detection result 
; 
;************************************************************************************************************ 
;KEYWORDS 
; 
;   Mode         - Set to use the mode class instead of linear mixtures of class stats 
;   Low_Contrast - Set when searching for low contrast targets to omit mean subtraction from d. 
; 
;************************************************************************************************************ 
;- 
 
Function CMNG, Image, Target, Class_Image, Class_CovMeans, Stand_Off, & 
   Low_Contrast=Low_Contrast, Mode=Mode 
;************************************************************************************************** 
;Size up and define variables 
 
StartTime = double(systime(1))              ;start the clock 
isize=size(image)                                    ;size the image 
ix=isize[1] 
iy=isize[2] 
bands=isize[3] 
pixels=ix * iy 
scc = size(class_covmeans)                   ;determine # of classes 
classes = scc[3] 
Win = (2.0 * Stand_Off) + 3                  ;window side size 
BRPix = 8 * (Stand_Off + 1)                   ;number of pixels in background ring 
BackRing = intarr(BrPix+Classes+1)    ;The sliding ring 
DetPix = dblarr(1,bands)                       ;The detection pixel 
BackCov = dblarr(bands,bands)            ;The covariance derived from BackRing 
BackCovI = dblarr(bands,bands)           ;The inverted covariances  
BackMean = dblarr(1,bands)                 ;The mean derived from BackRing 
DetRes = dblarr(ix,iy)                            ;The detection results 
NoXSlides = ix - Win - 2                        ;how many slides in the x direction 
NoYSlides = iy - Win - 2                        ;how many in y 
NoWindows = (NoXSlides+1) * (NoYSlides+1)   ;how many total slides 
 
If Keyword_Set(Mode) Then Begin 
for i = 0,classes-1 do BackCovI[*,*,i] = Invert(Class_CovMeans[1:Bands,*,i],/double) 
EndIf 
WinCount = 0 
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;************************************************************************************************** 
;Slide window/calculate backgroud/run detector 
 
StartItTime = double(systime(1))                      ;start the clock on iterations 
 
For j = 0,NoYSlides-1 Do Begin                      ;increment the sliding the window position 
For i = 0,NoXSlides-1 Do Begin 
 
    ;gather pixels into the background ring 
    BackRing[0:win-1] = Class_Image[i,j:j+win-1] 
    BackRing[win:2*win-1] = Class_Image[i+win-1,j:j+win-1] 
    BackRing[2*win:3*win-3] = Class_Image[i+1:i+win-2,j] 
    BackRing[3*win-2:BRPix-1] = Class_Image[i+1:i+win-2,j+win-1] 
    BackRing[BRPix:BRPix+classes] = indgen(classes+1)    ;be sure to include each integer 
 
    H_BR = Histogram(BackRing) - 1   ;histogram and subtract the indgen-added occurance 
 
    ;eliminate null class values and select class 1 in case of full null backgrounds. 
    H_BR[0] = 0 
    If Total(H_BR) EQ 0 Then H_BR[1] = 1 
  
    If Keyword_Set(Mode) Then Begin 
    Winner = min(where(H_BR EQ Max(H_BR))) ;min incase there is a tie 
    BackMean = Class_CovMeans[0,*,Winner-1] 
    EndIf Else Begin 
 
    BackCov[*,*] = 0.0 & BackMean[*,*] = 0.0 
 
    ;Sum the class means and covariances in ratios 
    For k = 1,classes-1 Do Begin  
        BackCov =  BackCov + ((H_BR[k] / double(BRPix)) * Class_CovMeans[1:bands,*,k-1])   
        BackMean =  BackMean + ((H_BR[k] / double(BRPix)) * Class_CovMeans[1:bands,*,k-1])   
    EndFor 
 
    ;find the center pixel and run detector 
    DetPix = reform(Image[i+Stand_Off+1,j+Stand_Off+1,*],1,bands)   
    x = DetPix - BackMean 
    xT = reform(x,bands,1) 
    IF keyword_set(Low_Contrast) Then d = Target Else d = Target - BackMean 
    dT = reform(d,bands,1) 
    IF KeyWord_Set(Mode) Then SI = BackCovI[*,*,Winner-1] Else SI = Invert(BackCov,/double) 
 
    DetRes[i+Stand_Off+1,j+Stand_Off+1] = (dT ## SI ## X)^2.0 / ((dT ## SI ## d) * (1.0 + (xT ## SI ## x))) 
 
;************************************************************************************************** 
;Keep track of progress 
 
    WinCount = WinCount + 1 
    If WinCount EQ floor(NoWindows/10) Then Begin 
    HundTime = double(systime(1)) & TimeToHund = HundTime - StartItTime 
    Print,Format='("CMNG is 1% complete, and will take approximately",1X,I8,1X,$ 
             "seconds to complete.")',TimeToHund * 100.0 
    WinCount = Pixels 
    Beep & wait,1.0 
    EndIf 
 
EndFor 
EndFor 
 
;************************************************************************************************** 
;Return and End 
 
EndTime = double(systime(1)) 
RunTime = EndTime - StartTime 
print,format='("A_RX completed  ",2X,A24,2X,"and lasted",1X,I5,1X,"seconds.")',systime(),RunTime 
 
Return, DetRes 
Beep & wait,0.5 & Beep & wait,0.5 & Beep & wait,0.5 & Beep & wait,0.5 & Beep & wait,0.5 
END ;CMNG 
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;+ 
;Class Mean & Covariance Estimator with Statistical Distance and Target Exclusion 
;Jason E West 
;28 Feb 2004 
 
;************************************************************************************************* 
;                               FUNCTION 
; 
;   This program calculates the class statistics of an HSI image given a classmap. 
;   Statistical distance exclusion and target exclusion pre-filtering can also be 
;   performed. 
; 
;************************************************************************************************* 
;                               INPUTS 
; 
;   Image       - the full image as [bands,pixels] 
;   ClassImage   - the classified image as [x,y] where values are 1,2,3...K 
;                    corresponding with classes 
;   Exclude      - the fraction of pixels to exclude from each class, i.e. 0.1 means 
;                    10% of the outer pixels will be excluded 
;   XMap         - target exclusion map where 1 denotes pixles to be excluded 
; 
;************************************************************************************************* 
;                               OUTPUT 
; 
;   Result       - class means and covariances as [bands+1,bands,classes] 
;                        where [0,*,*] are class means 
; 
;************************************************************************************************* 
;                               KEYWORDS 
; 
;   Normality    - Set to run the Chi-Squared test for MVN along with the calculation 
; 
;************************************************************************************************* 
;                               USES 
;   Chi-Squared.pro 
;- 
 
Function Class_MeanCov_SDEX,Image,ClassImageIn,Exclude,XMap,Normality=Normality 
 
SImage = Size(image) 
pixels = SImage[2] & bands = SImage[1] & classes = Max(ClassImageIn) 
 
ClassImage = ClassImageIn 
If n_elements(XMap) GT 0 Then Begin 
   Targs = Where(XMap GT 0) 
   ClassImage[Targs] = 0 
EndIf 
 
ClassCovs = ptr_new(dblarr(bands,bands,classes)) & ClassMeans = ptr_new(dblarr(1,bands,classes)) 
 
For i = 1,Classes Do Begin 
 
    CPixels = Where(ClassImage EQ i,PixCount) 
    If PixCount GT 0 Then Begin 
        TCovImage =Image[*,CPixels] & TMean = dblarr(bands,1) 
        TempCov = Correlate(TCovImage,/Covariance,/Double) & ITempCov = Invert(TempCov)  
        For j=0,Bands-1 Do TMean[j,0] = Mean(TCovImage[j,*]) 
    EndIf Else Print,'Class'+string(i)+'has no remaining pixels' 
 
    If Exclude GT 0 Then Begin 
        StatDist = ptr_new(dblarr(PixCount)) 
        For j = 0l,PixCount-1 Do Begin 
 (*StatDist)[j] = ((TCovImage[*,j]-TMean[*,0]) ## ITempCov ## transpose(TCovImage[*,j]-TMean[*,0])) 
        EndFor 
 
        PixExl = floor(PixCount * Exclude) & ExlSort = reverse(Sort(*StatDist,/L64)) 
        CovImage = Image[*,ExlSort[0:PixExl]]  
        (*ClassCovs)[*,*,i-1] = Correlate(CovImage,/Covariance,/Double) 
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        For j=0,Bands-1 Do (*ClassMeans)[0,j,i-1] = Mean(CovImage[j,*]) 
    EndIf Else Begin 
        CovImage = TCovImage 
        Print,'No pixels excluded by SDE.  Printed MVN results are both for Xmap exclusion.' 
    EndElse 
 
    If Keyword_Set(Normality) Then Begin 
        Temp1 = Chi_Squared(TCovImage,100,/NoPlot,/Metric)&print,String(i)+'Class MVN is'+String(Temp1) 
        Temp2 = Chi_Squared(CovImage,100,/NoPlot,/Metric)&print,String(i)+'Class SDE MVN is'+String(Temp2) 
    EndIf 
 
    ptr_free,StatDist 
 
    Print,Format='("There are",1X,I0,1X,"pixels in class",1X,I0,1X,"and",1X,I0,1X,$ 
  "of them were excluded.")',string(PixCount),string(i),string(PixCount*Exclude) 
 
EndFor 
 
Result = dblarr(Bands+1,Bands,Classes) 
Result[0,*,*] = *ClassMeans 
Result[1:Bands,*,*] = *ClassCovs 
ptr_free,ClassCovs,ClassMeans 
 
Return,Result 
 
END ;Class_MeanCov_SDEX 
 
;+ 
;Chi-Squared Test for Multivariate Normality (MVN) 
;Jason West 
;30 Nov 2004 
 
;************************************************************************************************* 
;                               FUNCTION 
;This function will generate a Chi-Squared plot to test MVN of a data set (Data) with a given 
;covariance (Covar), and will return the normalized chi-squared goodness of fit value for the plot. 
; 
;************************************************************************************************* 
;     INPUT 
; 
;   Data         - A mulitvariate data set as [bands,pixels] 
;   MeanCov  - The mean and covariance of that data set (will be calculated if not included) 
;   dF            - The degrees of freedom of the data 
; 
;************************************************************************************************* 
;      OUTPUT 
; 
;   R              - The chi-squared goodness of fit measure or the data for the plot 
; 
;************************************************************************************************* 
;     KEYWORDS 
; 
;   NoPlot      - set this if you don't want to display the chi-squared plot 
;   Metric      - set this to return only the GOF metric 
;- 
 
Function Chi_Squared,Data,dF,MeanCov,NoPlot=NoPlot,Metric=Metric,Verbose=Verbose 
 
sData = Size(data) 
pixels = sData[2] & bands = sData[1] 
 
If n_elements(MeanCov) EQ 0 Then Begin 
MeanCov[1:bands,*] = Correlate(Data,/Covariance,/Double) 
MeanCov[0,*] = dblarr(bands,1) & For i = 0,bands-1 Do Mean_Vec[i,0] = Mean(Data[i,*]) 
EndIf 
 
ICov = Invert(MeanCov[1:bands,*]) 
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;Find the statistical distance values 
R2 = dblarr(pixels) 
For j = 0l,pixels-1 Do R2[j] = (Data[*,j]-MeanCov[0,*]) ## ICov ## transpose((Data[*,j]-MeanCov[0,*])) 
 
;Rank order the R2 results 
Sorter = Sort(R2) & SR2 = dblarr(pixels) & For j = 0l,pixels-1 Do SR2[j] = R2[Sorter[j]] 
 
;Then find the corresponding Chi_Squared quantiles 
Chi = dblarr(pixels) & For i = 1l,pixels Do Chi[i-1] = ChiSqr_CVF(((pixels - i + 0.5) / pixels),dF) 
 
;Plot it unless the NoPlot keyword is set 
If KeyWord_Set(NoPlot) Then Begin 
EndIf Else Begin 
     device,decomposed=0 & loadct,0 & window,/free,xsize=500,ysize=500,title='Chi-Squared Plot' 
     plot,Chi,SR2,psym=3,color=0,background=255,title='Chi-Squared Plot',xtitle=$ 
         'Chi-Squared Quantiles',ytitle='Data Distribution' 
EndElse 
 
;Print the Chi-Squared goodness of fit metric 
If Keyword_Set(Verbose) Then Print,'The GOF Metric is' + String(Total(((SR2-Chi)^2.0)/Chi) / double(pixels)) 
 
Res = dblarr(2,pixels) & Res[0,*] = Chi & Res[1,*] = SR2 
 
If Keyword_Set(Metric) Then Return,Total(((SR2-Chi)^2.0)/Chi) / double(pixels) Else Return,Res 
 
END;Chi_Squared 
 
;+ 
;Reciever Operator Characteristic (ROC) Curve Calculator 
;Written by: Adam Cisz 
;20Jan05 
;Edits: Jason West, 16 May 05 add keywords 
; 
;;********************************************************************************** 
;                               FUNCTION 
; 
;     This program counts the number of false alarms that occur for the detection of 
;     each target pixel in an image.  This data can then be used to create ROC curves. 
; 
;********************************************************************************** 
;                               INPUTS 
; 
;     tdet   - detection results from previous algorithm (results in x,y format) 
;     t_truth  - truth image (x,y format)(guard pixels = -1, target pixels > 0) 
; 
;********************************************************************************** 
;                               OUTPUT 
; 
;     2 column array where first column lists percentage of targets detected and 
;     second column lists percentage of false alarms encountered before detecting 
;     each target pixel. 
; 
;********************************************************************************** 
;                              KEYWORDS 
; 
;    sam     - set if low detection statistics correspond to a probable target 
;    all_pix  - Set to perform analysis on all target pixels 
;    (full/sub/glare/shadow)_pix - Set to perform analysis on full/sub/glare/shadow pixels only 
;- 
 
function roc_calc, tdet, t_truthin, sam=sam, & 
        full_pix=full_pix,sub_pix=sub_pix,all_pix=all_pix,glare_pix=glare_pix,shadow_pix=shadow_pix 
 
t_truth = t_truthin 
; Define regions 
targ    = where(T_Truth GT 0, targ_count) & full    = where(T_Truth EQ 8, full_count) 
glare   = where(T_Truth EQ 6, glare_count) & shadow  = where(T_Truth EQ 4, shadow_count) 
sub     = where(T_Truth EQ 2, sub_count) & guard   = where(T_Truth EQ -1,guard_count) 
back    = where(T_Truth EQ 0, back_count) 
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If Keyword_Set(full_pix) Then Begin 
    If Sub_Count GT 0 Then T_Truth[Sub] = -1 
    If Glare_Count GT 0 Then T_Truth[Glare] = -1 
    If Shadow_Count GT 0 Then T_Truth[Shadow] = -1 
    res=transpose(dindgen(full_count,2))+1 
    res[1,*] = 0 
EndIf 
 
If Keyword_Set(sub_pix) Then Begin 
    If Full_Count GT 0 Then T_Truth[Full] = -1 
    If Glare_Count GT 0 Then T_Truth[Glare] = -1 
    If Shadow_Count GT 0 Then T_Truth[Shadow] = -1 
    res=transpose(dindgen(sub_count,2))+1 
    res[1,*] = 0 
EndIf 
 
If Keyword_Set(glare_pix) Then Begin 
    If Full_Count GT 0 Then T_Truth[Full] = -1 
    If Sub_Count GT 0 Then T_Truth[Sub] = -1 
    If Shadow_Count GT 0 Then T_Truth[Shadow] = -1 
    res=transpose(dindgen(glare_count,2))+1 
    res[1,*] = 0 
EndIf 
 
If Keyword_Set (shadow_pix) Then Begin 
    If Full_Count GT 0 Then T_Truth[Full] = -1 
    If Sub_Count GT 0 Then T_Truth[Sub] = -1 
    If glare_Count GT 0 Then T_Truth[glare] = -1 
    res=transpose(dindgen(shadow_count,2))+1 
    res[1,*] = 0 
EndIf 
 
If Keyword_Set (all_pix) Then Begin 
   res=transpose(dindgen(targ_count,2))+1 
   res[1,*] = 0 
EndIf 
 
tsize = size(tdet)                  ;calculate total number of pixels 
tsize=tsize(4) 
 
;Redefine regions 
targ    = where(T_Truth GT 0, targ_count) & full    = where(T_Truth EQ 8, full_count) 
glare   = where(T_Truth EQ 6, glare_count) & shadow  = where(T_Truth EQ 4, shadow_count) 
sub     = where(T_Truth EQ 2, sub_count) & guard   = where(T_Truth EQ -1,guard_count) 
back    = where(T_Truth EQ 0, back_count) 
 
norm = tsize-targ_count-guard_count 
no_fas = 0L 
no_tgs = 0L 
If Keyword_Set(sam) Then rank=sort(Tdet, /L64) else rank=reverse(sort(Tdet, /L64)) 
 
For i=0L, tsize-1 Do Begin 
    If t_truth(rank[i]) GT 0 Then Begin 
       res(1,no_tgs)=no_fas 
       no_tgs=no_tgs+1 
    EndIf Else If t_truth(rank[i]) eq 0 Then no_fas=no_fas+1 
    If no_tgs EQ targ_count Then i=tsize-1 
EndFor 
 
res(0,*)=res(0,*)/(targ_count) & res(1,*)=res(1,*)/(norm) 
 
Return, res[1,*] 
 
END ;Roc_Calc 


